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Abstract 
Wearable devices have become indispensable tools for monitoring physiological 
parameters and tracking daily physical activity. Smartwatches and fitness 
trackers offer users convenient ways to measure key health indicators, such as 
step count. However, accuracy remains a significant concern, particularly for 
applications in clinical seCings or continuous health monitoring. Many 
commercial devices face limitations due to interference from body movements 
and environmental factors, and their proprietary algorithms are often opaque, 
functioning as “black boxes” that limit user control and adaptability. 
This Thesis explores the accuracy of the Bangle.js smartwatch, an open-source 
wearable device that allows researchers and developers to access and refine its 
step-counting algorithms. The open-source nature of Bangle.js provides a unique 
opportunity to enhance algorithm performance, making it a compelling option 
for both academic research and personal health monitoring. 
The objectives of this study are: 

• To collect data from the Bangle.js smartwatch alongside a reliable ground-
truth, i.e., a device based on an Inertial Measurement Unit (IMU), 
following a rigorous experimental protocol.  

• To develop a step counting algorithm for the data collected with the IMU-
based device, which is used as the ground truth. 

• To compare and analyze existing open-source algorithms for step 
counting, identifying those that offer the highest accuracy, with the goal 
of implementing improvements in Bangle.js. The algorithms tested for this 
study are: Espruino algorithm, Oxford algorithm, BangleSimple 
algorithm, Dummy algorithm, Autocorrelation algorithm and Fast Fourier 
Transform algorithm. 

The experimental protocol included a range of activities designed to simulate 
real-life usage, such as light tasks, resting phases, treadmill walking at varying 
speeds, stair climbing, and outdoor walking. 
The results indicate that, while the Bangle.js’s existing algorithms, such as 
Espruino and BangleSimple, perform well in many everyday activities, they face 
challenges in scenarios involving more complex movements, such as treadmill 
walking. Comparatively, more sophisticated algorithms, like the Fast Fourier 
Transform-based algorithm, demonstrated strengths in specific contexts, 
particularly outdoor walking, where step paCerns are more natural. However, 
this algorithm is also computationally demanding, highlighting a trade-off 
between accuracy and efficiency that is critical for wearable applications. 
Through this comprehensive analysis, we identified which existing algorithms 
provide the best balance between accuracy and computational cost for specific 
activities. These findings lay a foundation for refining the Bangle.js’s step-
counting capabilities by integrating algorithmic approaches that optimize both 
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accuracy and resource efficiency. This research offers insights into potential 
modifications that could be applied to the Bangle.js’s code, enhancing its 
adaptability and precision in future iterations 
  
Keywords: Wearable devices, step-counting algorithm, experimental protocol, 
algorithm comparison, data analysis. 
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Abstract in italiano 
 
I dispositivi indossabili sono diventati strumenti indispensabili per monitorare i 
parametri fisiologici e tenere traccia dell'aCività fisica quotidiana. Gli smartwatch 
e i fitness tracker offrono agli utenti modi pratici per misurare indicatori di salute 
chiave, come il conteggio dei passi. TuCavia, l'accuratezza rimane un problema 
significativo, in particolare per le applicazioni in ambito clinico o per il 
monitoraggio continuo della salute. Molti dispositivi commerciali presentano 
limitazioni dovute all'interferenza dei movimenti del corpo e dei faCori 
ambientali, i loro algoritmi sono spesso poco trasparenti, funzionando come 
“scatole nere” che limitano il controllo e l'adaCabilità dell'utente. 
Questa tesi esplora l'accuratezza dello smartwatch Bangle.js, un dispositivo 
indossabile open-source che consente a ricercatori e sviluppatori di accedere e 
perfezionare i suoi algoritmi di conteggio dei passi. La natura open-source di 
Bangle.js offre un'opportunità unica di migliorare le prestazioni degli algoritmi, 
rendendolo un'opzione interessante sia per la ricerca accademica che per il 
monitoraggio della salute personale. 
Gli obieCivi di questo studio sono: 

• Raccogliere dati tramite lo smartwatch Bangle.js, insieme a una ground-
truth affidabile, cioè un dispositivo basato su un'unità di misura inerziale 
(IMU), seguendo un protocollo sperimentale rigoroso. 

• Sviluppare un algoritmo di conteggio dei passi per i dati raccolti con il 
dispositivo basato su IMU, utilizzato come ground-truth. 

• Confrontare e analizzare gli algoritmi open-source esistenti per il 
conteggio dei passi, identificando quelli che offrono la massima 
precisione, con l'obieCivo di implementare i miglioramenti in Bangle.js. 
Gli algoritmi testati per questo studio sono: algoritmo Espruino, algoritmo 
Oxford, algoritmo BangleSimple, algoritmo Dummy, algoritmo di 
autocorrelazione e algoritmo di Trasformata Veloce di Fourier. 

Il protocollo sperimentale comprendeva una serie di aCività progeCate per 
simulare l'uso nella vita reale, come compiti leggeri, fasi di riposo, camminata su 
tapis roulant a velocità variabile, aCività su scale e camminata all'aperto. 
I risultati indicano che, mentre gli algoritmi esistenti di Bangle.js, come Espruino 
e BangleSimple, si comportano bene in molte aCività quotidiane, incontrano 
difficoltà in scenari che comportano movimenti più complessi, come la 
camminata su tapis roulant. Al contrario, algoritmi più sofisticati, come quello 
basato sulla Trasformata di Fourier Veloce, si sono dimostrati efficaci in contesti 
specifici, in particolare nella camminata all'aria aperta, dove i modelli di passo 
sono più naturali. TuCavia, questo algoritmo è anche impegnativo dal punto di 
vista computazionale, evidenziando un compromesso tra accuratezza ed 
efficienza che è fondamentale per le applicazioni indossabili. ACraverso questa 
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analisi completa, abbiamo identificato quali algoritmi esistenti offrono il miglior 
equilibrio tra accuratezza e costo computazionale per aCività specifiche. Questi 
risultati geCano le basi per perfezionare le capacità di conteggio dei passi di 
Bangle.js, integrando approcci algoritmici che oCimizzino sia l'accuratezza sia 
l'efficienza delle risorse. Questa ricerca offre spunti per potenziali modifiche che 
potrebbero essere applicate al codice di Bangle.js, migliorandone l'adaCabilità e 
la precisione nelle iterazioni future. 
 
Parole chiave: Dispositivi indossabili, algoritmo di conteggio dei passi, 
protocollo sperimentale, confronto tra algoritmi, analisi dei dati. 
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1 Introduction 
1.1. An overview of wearable devices 
In recent years, the proliferation of wearable devices has profoundly transformed 
the way various physiological parameters and daily physical activity can be 
monitored. Tools like smartwatches and fitness trackers allow users to keep track 
of crucial health aspects, such as pulse rate, step count, distance traveled, and 
calories burned. This technology has quickly gained popularity due to its ease of 
use and ability to continuously and non-invasively collect data, facilitating the 
autonomous management of health and well-being by users. 

The accuracy of such measurements is of great importance, especially when 
considering their potential use in clinical seCings or for continuous health 
monitoring. Despite technological improvements, many commercial devices still 
have limitations, not only in terms of accuracy, particularly due to body 
movements or environmental interferences, but also the hardware components 
must be compact and energy efficient. The algorithm that processes the data can 
significantly affect the reliability of the measurements, and often the technical 
details on how these algorithms operate remain unknown due to industry 
proprietary rights. In fact, many products on the market do not provide detailed 
information about the algorithms employed to monitor parameters such as pulse 
rate or step count, which limits the ability to assess the accuracy of the 
measurements or to make improvements. This lack of transparency poses a 
significant obstacle, especially in the healthcare field, where methods validation 
and accuracy are essential for safe and reliable use [1]. 
 
The aim of this Thesis is to investigate the accuracy of wearable devices for 
monitoring parameters such step count, using the Bangle.js device. Bangle.js is 
an open-source smartwatch [2]. Unlike most commercial devices, where the 
algorithms are proprietary and operate as "black boxes", Bangle.js allows 
researchers and developers to access, modify, and improve the algorithms that 
handle pulse rate and step counting. This programmability offers the potential to 
investigate the data usage and methods as one prefers, making it a powerful tool 
for both personal health monitoring and academic research [3]. 
 
The objectives of the Thesis are the following: 
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• To collect data from the Bangle.js smartwatch alongside a reliable ground-
truth, i.e., a device based on an Inertial Measurement Unit (IMU), 
following a rigorous experimental protocol.  

• To develop a step counting algorithm for the data collected with the IMU-
based device, which is used as the ground truth. 

• To compare and analyze existing open-source algorithms for step 
counting, identifying those that offer the highest accuracy, with the goal 
of implementing improvements in Bangle.js. 

By leveraging the open-source nature of Bangle.js, we can modify and potentially 
enhance these algorithms, ultimately creating a more reliable and accurate 
monitoring solution for users. Furthermore, open-source development has 
inherent benefits for security and privacy, which are increasingly important in 
healthcare. As noted in the computer security community, transparency in 
design, protocols, and source code generally leads to improved security. 
Commercial wearables typically rely on companion mobile apps that often come 
with complex and non-user-friendly privacy policies, raising concerns about the 
protection of personal data. An open-source approach mitigates these issues by 
enabling users to audit and improve firmware development for healthcare 
applications [4] [5]. 
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2  State of the Art 
2.1. Overview of physical activity 
Physical activity is a crucial element in assessing a person's health status, as it is 
closely linked to both physical and mental well-being. It refers to any bodily 
movement produced by skeletal muscles that results in energy expenditure 
higher than at rest. The importance of physical activity lies in its numerous health 
benefits, including improvements in cardiorespiratory and muscular capacity, 
bone health, balance, and body weight control. Additionally, it plays a 
fundamental role in reducing the risk of cardiovascular, metabolic, and 
neurological diseases, making its measurement and monitoring essential in 
various contexts, including clinical and preventive seCings. 
According to the guidelines of the World Health Organization (WHO) and other 
international institutions, adults should engage in at least 150-300 minutes of 
moderate physical activity or 75-150 minutes of intense activity per week, or an 
equivalent combination. These levels of physical activity are associated with a 
reduced risk of all-cause mortality and cardiovascular diseases, with the 
maximum benefit being achievable with as liCle as 150 minutes of moderate 
activity, or approximately 8.25 hours per week. For older adults, a combination 
of exercises that includes balance training, aerobic activities, and muscle-
strengthening exercises is recommended to counteract age-related physical 
decline and improve physical functionality [6]. 
Conversely, sedentary behavior is an increasingly widespread problem globally. 
Physical inactivity is associated with a 20-30% increased risk of mortality and is 
one of the main risk factors for chronic diseases such as obesity, type 2 diabetes, 
hypertension, and heart disease. In the United States, the obesity rate has reached 
alarming levels: 39.8% of adults and 18.5% of youth are considered obese, with 
annual healthcare costs reaching $147 billion in 2008, a figure that may be even 
higher today, exceeding $320 billion per year. To address this emergency, 
initiatives like "Healthy People 2020" have sought to increase the percentage of 
the population with healthy body weight by promoting physical activity and the 
adoption of healthier lifestyles [7]. 
The increase in the use of monitoring devices, such as smartwatches and 
smartphones, has made step count a more accessible metric. Today, more than 
80% of Americans own a smartphone, while the wearable device market has seen 
exponential growth, with sales surpassing 113.1 million units sold worldwide in 
the first quarter of 2024. The expansion of these devices represents a valuable 
resource for monitoring and increasing physical activity, although their accuracy 
in step counting is subject to debate. Some studies suggest that while the devices 
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tend to be accurate in counting steps in young adults, they may not be as reliable 
in older populations or individuals with mobility difficulties [8]. 
The monitoring of physical activity through daily step counts is, therefore, an 
effective tool, but its accuracy depends on variables such as age, weight, height, 
and device position. For instance, wrist-worn devices tend to underestimate steps 
in controlled environments but may overestimate them in real-life conditions. 
Additionally, older adults, who may experience muscle weakness and altered 
gait, may record inaccurate step counts. Despite these limitations, achieving an 
adequate number of daily steps remains an important goal for improving overall 
health and reducing the risk of disease.  

2.2. Gait cycle  

 
Figure 2.1 - Gait cycle 

The human gait cycle, shown in Figure 2.1, represents a rhythmic sequence of 
movements that repeat during walking. Each phase of this cycle involves a 
precise and coordinated interaction between muscles, joints, and bones, ensuring 
balance, stability, and forward propulsion of the body. The gait cycle begins with 
the initial contact of the foot with the ground (often referred to as "heel strike") 
and ends with the final lifting of the foot (known as "toe-off"). It is divided into 
two main phases: the stance phase, where the foot is in contact with the ground, 
and the swing phase, during which the foot is lifted, and the leg prepares for the 
next ground contact [9]. 

The stance phase covers about 60% of the gait cycle and includes a series of sub-
sequences that help support the body's weight and absorb the impact with the 
ground. During this phase, three key movements of the foot can be distinguished: 
the first occurs at initial contact, when the heel touches the ground, and the foot 
gradually moves into a flat position; the second movement happens when the 
tibia leans forward over the planted foot, allowing the body to move ahead; 
finally, the third movement consists of the heel lifting and pushing forward, 
facilitated by plantar flexion, which accelerates the body's progression. The 
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swing phase, on the other hand, is essential for repositioning the foot, allowing 
the leg to advance freely in preparation for the next ground contact [10]. 

The study of the gait cycle is of great interest in numerous fields, including 
biomechanics, sports medicine, and rehabilitation. By analyzing the details of 
movement, it is possible to identify normal and pathological paCerns, providing 
valuable information for improving physical performance, preventing injuries, 
and designing rehabilitation programs. For example, in gait pathologies, one or 
more of the normal phases of the cycle may be altered or absent, leading to 
compensations in movement and an increased risk of falls or injuries [11]. 

This description of the gait cycle provides a foundation for understanding how 
step counting has become a widely used methodology for monitoring daily 
physical activity. Step counting is based on the measurement and analysis of each 
gait cycle, providing a simple yet effective indicator of an individual's physical 
activity level [12]. 

2.3. Step counting 
Step counting represents one of the simplest and most accessible methods for 
monitoring and promoting daily physical activity. Its popularity stems mainly 
from the ease with which it allows the measurement of daily movement, 
providing a tangible metric to assess physical effort and encourage a more active 
lifestyle. The goal of 10,000 steps per day, originally introduced by Japanese 
pedometer manufacturers in the 1960s, has found widespread support in 
scientific literature. Numerous studies show that reaching this daily target brings 
significant health benefits, such as reducing the risk of chronic diseases like type 
2 diabetes, cardiovascular diseases, and certain types of cancer. 
[9] However, it is important to consider that the optimal number of steps can vary 
based on the individual and their health conditions. Recent research suggests that 
for even more effective protection against serious diseases, it may be necessary 
to increase the daily step count to 12,000 or 15,000 steps. This highlights the 
importance of personalizing physical activity goals, adapting them to the specific 
needs and abilities of the individual [13]. In addition to the number of steps, it is 
also crucial to monitor the intensity of physical activity. To this end, tracking 
pulse rate is a valuable tool, as it allows the assessment of an individual’s aerobic 
capacity and the adjustment of workouts to achieve the best health results, 
keeping exercise within a safe and effective effort zone [14]. 

2.3.1. Techniques for step counting  
Step counting algorithms have evolved to use various methods, each with 
distinct advantages depending on the application and context. Some of the most 
common techniques for counting steps include: 
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1. Accelerometer-Based Methods: These rely on detecting changes in 
acceleration caused by foot movement. Algorithms analyze the peaks and 
troughs in the accelerometer data to count steps. This is the most widely 
used method in consumer wearables due to its simplicity and low power 
consumption [15]. 

2. IMU-Based Methods: IMUs incorporate accelerometers, gyroscopes, and 
magnetometers to track motion and orientation. When combined with 
algorithms that filter and process these signals, IMUs provide accurate 
step detection, even in complex motion scenarios such as running or 
navigating uneven surfaces [16]. 

3. GPS-Based Methods: GPS tracks the distance traveled and can infer steps 
by estimating the user’s stride length. While this method is more power-
intensive, it is particularly useful for outdoor activities like hiking [15]. 

4. Optical Sensors-Based Methods: While less common for step counting 
alone, some devices integrate optical sensors to complement the 
previously mentioned methods, enhancing accuracy by monitoring 
movement and physiological signals [15]. 

5. Pressure Sensors-Based Methods: Generally placed in footwear, pressure 
sensors detect footfalls directly, offering an alternative to accelerometer-
based wearables for specific use cases like medical monitoring [15]. 

Step counting plays a critical role in promoting physical activity and monitoring 
health. It provides an easy-to-understand metric for daily movement, 
encouraging users to stay active. Research has shown a strong link between daily 
step counts and health outcomes, including reduced risks of cardiovascular 
diseases, diabetes, and obesity. Therefore, step-counting algorithms are not just 
a feature in fitness trackers but have significant implications in healthcare [16]. 
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2.4. Digital medicine 
Digital medicine marks a significant paradigm shift in healthcare, fundamentally 
transforming how medical care is delivered. By incorporating advanced 
software, algorithms, and state-of-the-art technologies, digital medicine enables 
the continuous collection, analysis, and use of patient data to inform medical 
decisions. Unlike traditional healthcare systems, which often operate in a reactive 
manner, responding to symptoms or health issues as they arise, digital medicine 
takes a proactive approach. Using wearable devices, remote monitoring, and 
data-driven algorithms, patients' health can be continuously monitored in real-
time. This enables healthcare providers to intervene at the earliest signs of a 
problem, leading to more timely treatments and beCer outcomes [17]. 
Central to digital medicine is its closed-loop system, where data is not only 
collected but also processed in real time to trigger immediate actions or 
interventions. This feedback loop ensures that patient management becomes 
dynamic, continuously adjusting to the individual’s evolving health status. For 
example, a patient with a chronic condition like diabetes can benefit from 
continuous glucose monitoring systems that automatically adjust insulin levels. 
Similarly, those with cardiovascular issues can use wearable devices that alert 
healthcare providers in case of abnormal heart rhythms, significantly reducing 
the risk of severe complications. Studies show that such real-time monitoring and 
intervention can reduce hospitalizations by up to 38%, emphasizing the immense 
potential of digital health tools to reshape patient care [18]. 
Scientific rigor plays a key role in the deployment of these tools. Digital health 
technologies must go through rigorous processes of verification and validation. 
Verification ensures that these tools are designed and function as intended, while 
validation assesses their effectiveness in achieving clinical outcomes. This 
rigorous approach ensures that patient safety is paramount and that the tools 
deployed in clinical seCings are not only innovative but also reliable. 
The scope of digital medicine extends to a wide range of innovative technologies. 
Wearable devices, such as smartwatches and fitness trackers, have become 
integral to monitoring vital signs like pulse rate, physical activity, sleep paCerns, 
and even blood oxygen levels. Telemedicine platforms are revolutionizing access 
to healthcare, allowing patients to consult with their healthcare providers 
remotely via video calls, reducing the need for in-person visits, and making 
healthcare more accessible to remote or underserved populations. Digital 
therapeutics, another growing field, employ software-based solutions to treat 
and manage various conditions, such as mental health disorders, hypertension, 
and respiratory diseases, offering non-invasive, scalable, and cost-effective 
treatment alternatives. 
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In addition to patient monitoring and management, digital medicine significantly 
enhances clinical decision-making. Artificial intelligence (AI) and machine 
learning (ML) technologies are increasingly being adopted in healthcare to 
analyze vast datasets and detect paCerns that may not be apparent to human 
observers. AI-driven diagnostics, for instance, have shown the potential to match 
or even surpass the accuracy of human experts in identifying conditions such as 
diabetic retinopathy and lung cancer in their early stages. These technologies not 
only improve diagnostic accuracy but also enable predictive analytics, allowing 
healthcare providers to anticipate complications and make data-informed 
decisions that improve long-term patient outcomes. 
The economic impact of digital medicine is equally substantial. The global market 
for digital health is expanding rapidly, with projections indicating it could reach 
$1.1 trillion by 2031, reflecting a compound annual growth rate of around 13.1% 
from 2023 to 2031 [19]. The COVID-19 pandemic has further accelerated the 
adoption of these technologies, as the need for remote healthcare solutions 
became more pressing. Telemedicine use, for instance, saw a 38-fold increase 
during the pandemic. 
As the role of digital health continues to grow, it is important to acknowledge the 
broader societal benefits of these advancements. Not only do they provide more 
personalized and effective care, but they also contribute to reducing healthcare 
costs by preventing hospital readmissions and optimizing resource allocation. 
Furthermore, they empower patients to take an active role in managing their 
health, fostering a more engaged and informed patient population. 
 

2.5. Overview of mobile health applications  
The proliferation of mobile health (mHealth) applications has transformed the 
way individuals monitor their health and access healthcare services. Mobile 
technology, particularly the widespread use of smartphones, has contributed to 
the rapid expansion of mHealth. This rapid growth has been accompanied by an 
explosion in the number of available health-related apps, with more than 100,000 
such apps available on mobile platforms [20]. 
mHealth apps are used for a variety of health-related purposes, ranging from 
fitness tracking and disease prevention to chronic disease management and 
virtual consultations with healthcare providers. According to the WHO, mHealth 
supports a broad range of functions, including health monitoring, 
communication between healthcare providers and patients, and real-time data 
collection. These apps, supported by mobile devices such as smartphones and 
tablets, as well as wearable sensors, have changed the landscape of healthcare by 
allowing users to track steps, monitor heart rates, and even manage chronic 
conditions. 
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The utility of mHealth apps extends beyond simple fitness tracking. Patients use 
these tools to manage long-term conditions like diabetes, asthma, and 
hypertension. For instance, apps that monitor blood pressure or track glucose 
levels provide users with actionable insights into their health, helping them make 
informed decisions about their care. The data collected by these apps is often 
used to inform treatment plans and can support clinical decision-making, 
potentially reducing the need for frequent in-person visits. 
The exponential growth in mHealth adoption is driven by several factors. The 
increasing affordability of smartphones, advances in sensor technology, and the 
desire for personalized healthcare experiences have all contributed to the rise of 
mHealth. However, while the adoption of these technologies has increased, 
issues such as data privacy, security, and regulatory oversight remain key 
challenges [20] 

2.5.1. Integration of mHealth app with healthcare systems 
MHealth applications are increasingly recognized for their ability to assist with 
various tasks traditionally managed by general practitioners, ranging from 
routine health monitoring to chronic disease management. A scoping review 
highlighted that mHealth apps can support tasks such as data gathering, 
symptom assessment, and even health promotion. These applications, integrated 
with wearable devices and smartphones, provide users with real-time insights 
into their health, reducing the need for frequent in-person consultations. For 
example, apps like Ada and Babylon allow patients to input symptoms and 
receive potential diagnoses directly on their mobile devices, empowering them 
to manage their health more independently [20]. 
Moreover, mHealth apps are particularly effective when combined with 
wearable technology and other sensors, which enable continuous monitoring of 
key health metrics. Popular apps like Google Fit and Apple Health act as 
aggregators, tracking metrics such as step counts, heart rate, and sleep paCerns. 
Wearables can provide a more comprehensive view of users' physical activity and 
heart health, encouraging preventive care and enabling beCer management of 
chronic diseases such as diabetes, asthma, and cardiovascular conditions [21]. 
While these apps have proven valuable in health self-management, there are still 
challenges in integrating them with formal healthcare systems. A major 
limitation is the lack of direct integration with electronic health records and 
healthcare professionals. Although patients can collect extensive health data, this 
data is rarely shared with or used by healthcare providers, limiting its potential 
to inform clinical decisions. Moreover, concerns about data accuracy and the 
risks of self-diagnosis without professional oversight hinder the full adoption of 
mHealth apps in clinical seCings. 
Another notable aspect of the growth in mHealth apps is the broader industry 
trend, which shows rapid expansion. With the growing number of smartphone 
users, more than 100,000 health-related apps are now available on major 
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platforms like the Google Play Store and Apple App Store, catering to a wide 
range of health needs, from fitness tracking to chronic disease management. A 
study highlighted in the Journal of Medical Internet Research showed that app users 
are more likely to meet their health goals, such as increased physical activity and 
beCer diet management, compared to non-users. This aligns with findings that 
mHealth apps are playing a crucial role in public health by promoting healthier 
behaviors and increasing health awareness among users [21]. As mHealth 
platforms continue to evolve, their potential to integrate seamlessly into 
healthcare systems and offer more personalized health monitoring is becoming 
increasingly evident. Table 2.1, modified from WaCanapisit et al. (2020), 
illustrates the range of tasks that mHealth apps can perform, such as data 
gathering, chronic disease management, and health promotion [20]. 
 

Task Category 
 

Example of available Apps 
 

Apply a structured 
approach to data 

gathering and 
investigation 

History 
taking 

Ada, Babylon, 
Medical history builder, Historian 

Ada, Babylon 

Interpret findings 
accurately to reach a 

diagnosis 
Diagnosis 

Ada, Doctor Diagnose Symptoms 
Check, GBDiagnosis Medical App, My 

diagnostic, Self Diagnosis, Symptomate, 
WebMD, 

Rapid diagnosis - mental health, Your 
rapid diagnosis – STD, 

Babylon 

Demonstrate a 
proficient approach to 
clinical examination 

Clinical 
examination 

 
Runtastic Heart Rate, SkinVision 

Demonstrate a 
proficient approach to 

the performance of 
procedures 

Medical 
procedures 

None 

Adopt appropriate 
decision-making 

principles 

Medical 
decision 
making 

 
Gout Decision Aid 



   
 

  
 

20 

Adopt a structured 
approach to clinical 

management 

Clinical 
management 

Rapid Diagnosis, Mental Health, Rapid 
Diagnosis - STD 

Make appropriate use 
of other professionals 

and services 

Health 
professionals 

None 

Provide urgent care 
when needed 

Urgent care Google Assistant, Siri 

Enable people with 
long-term conditions to 

improve their health 

Long-term 
care 

Asthma Manager, Blood Pressure 
Companion, mySugr, forDiabetes, Pill 
Reminder and Medication Tracker by 

Medisafe 

Manage concurrent 
health problems in an 

individual patient 

Health 
problems 

Asthma Manager, Blood Pressure 
Companion, mySugr, forDiabetes, Pill 
Reminder and Medication Tracker by 

Medisafe 

Coordinate a team-
based approach to 

patient care 

Team-based 
care 

None 

Support people through 
individual experiences 
of health, illness, and 

recovery 

Health 
promotion 

Appibuddy, Food (lg), HealthHub 
Track, Healthy 365 

HealthWatch, Healthy 365 
BECCA - Breast Cancer Support, The 

Circle of Health 
Table 2.1 – Tasks of a general practitioner that can be potentially performed by mHealth apps 

 

2.5.1.1. Example of mobile health platform: Mobistudy 
A promising example of a mobile health platform that addresses some of these 
challenges is Mobistudy [22] an open-source, mobile-based platform that 
supports multi-dimensional data collection for clinical studies. Mobistudy uses 
smartphones, IoT devices, and health data aggregators such as Google Fit and 
Apple HealthKit to facilitate real-time data collection. It enables researchers to 
design studies, recruit participants, and collect data using various sensors, all 
within a single unified infrastructure. Mobistudy supports multiple studies at 
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once, allowing participants to contribute to several research projects without 
needing separate apps for each study. 
One of the key features of Mobistudy is its task-based data collection, where 
participants are prompted to complete scheduled tasks such as questionnaires, 
activity tracking, and health assessments using connected devices. These tasks 
are delivered through an easy-to-use mobile app that supports both Android and 
iOS platforms. In a pilot study involving 18 participants, Mobistudy collected 
data on physical activity (e.g., step count), heart rate, and heart rate variability 
from devices like the Xiaomi MiBand 3 and smart peak flow meters. Over 23.8 
days (on average) of the 31-day study, participants generated a total of 531 
reports, including 265 on step counts, 53 on activities, 130 on heart rate, and 83 
on heart rate variability. This highlights the platform’s effectiveness in collecting 
diverse types of health data over extended periods [22]. 
In terms of use cases, shown in Figure 2.2, Mobistudy is designed to be highly 
flexible and extensible. Researchers can create studies without needing extensive 
technical knowledge, leveraging pre-built tasks that include not only step 
counting but also questionnaires, mood assessments, pulse oximetry, and more. 
For physical activity tracking, Mobistudy retrieves data on steps, heart rate, and 
other metrics from health aggregators. The app is also equipped to guide users 
through fitness tests like the Queen’s College step test and the 6-Minute Walk 
Test, which assess cardio-respiratory health. These use cases enable researchers 
to gather comprehensive data about participants' physical activity and health, 
making Mobistudy a powerful tool for studies on conditions like asthma, 
cardiovascular diseases, and other health concerns linked to mobility and 
activity.  

 
Figure 2.2 - Mobistudy- Use case 

 
While Mobistudy offers substantial advantages, it also faces challenges. One 
notable limitation is the difficulty in extracting data from certain wearables, such 
as Fitbit devices, which do not synchronize with Google Fit or Apple HealthKit. 
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Additionally, during the pilot study, data loss occurred due to connectivity 
issues, as Mobistudy does not currently buffer data when participants are offline. 
Despite these limitations, Mobistudy’s open-source nature allows continuous 
improvement, and its ability to handle multiple studies within one app makes it 
a powerful tool for researchers. 
 

2.5.2. Wearable devices 
Wearable devices represent one of the most revolutionary innovations in 
healthcare technology. Thanks to continuous advances in miniaturization and 
digital electronics, it is now possible to design tools capable of monitoring a wide 
range of physiological parameters and daily activities in real-time and remotely. 
These devices, which include smartwatches, smart bracelets, and other wearable 
technologies, allow for continuous and non-invasive health monitoring, 
seamlessly integrating with the daily lives of users, both in work and personal 
seCings [23]. 
The emergence of advanced technologies in this field has had a significant impact 
on awareness of personal health conditions and medical care, promoting a 
greater ability for early diagnosis and chronic disease management [24]. 
According to market research, the wearable healthcare device sector reached a 
value of over $25 billion in 2020, with an expected annual growth rate of 22.9% 
until 2027. This data highlights not only the growing interest in personal health 
and fitness but also the central role wearables are assuming as tools for 
continuous health condition monitoring [25]. 
 
Technical Components 
From a technical standpoint, wearable devices integrate a series of advanced 
sensors capable of detecting various physiological parameters. The main sensors 
used include: 

• Photoplethysmographic Sensors. The most common sensors for 
measuring pulse rate in smartwatches are based on 
photoplethysmography (PPG). This method uses an LED light source 
(typically green, as it is absorbed differently by oxygenated hemoglobin) 
and a photodiode that measures the light reflected from the underlying 
tissues. When the heart beats, the volume of blood in the tissues changes, 
and consequently, the amount of light absorbed and reflected also 
changes. The data collected by the photodiode is processed to calculate the 
number of beats per minute (bpm). [26] PPG also allows to estimate 
peripheral blood oxygen saturation (SpO2). In fact, a combination of LEDs 
with different wavelengths (typically red and infrared) can be used to 
measure the amount of oxygen bound to hemoglobin in the blood. 
Infrared light is absorbed more by oxygenated hemoglobin, while red 
light is absorbed more by deoxygenated hemoglobin. These differences 



   
 

  
 

23 

are detected by photodiodes and used to calculate the percentage of 
oxygen saturation in the blood [26]. 

• Inertial Measurement Units. These sensors are mainly used to detect 
movement, step count, and body position. Accelerometers measure 
changes in speed along one or more axes, while gyroscopes measure 
changes in orientation or rotation, and magnetometers measure the 
change in the Earth’s magnetic field. Both sensors generate electrical 
signals in response to body movements, and through advanced 
algorithms, the raw data is processed to determine the number of steps, 
overall physical activity, and even sleep cycles [27]. 

• Electrocardiogram (ECG) Sensors Some smartwatches are equipped with 
sensors to detect electrocardiograms (ECG). This sensor measures the 
heart's electrical activity through electrodes integrated into the device. The 
electrodes detect the electrical signals generated by the heart, and through 
advanced algorithms, the device can identify any irregularities in the heart 
rhythm, such as atrial fibrillation [28]. 

 
These devices not only enable the monitoring of vital parameters such as heart 
rate and blood pressure but are also capable of detecting changes related to 
medical conditions like fatigue, diabetes, and inflammatory responses. For 
instance, recent studies have shown how smartwatches can help predict 
cardiometabolic conditions and detect early stages of atrial fibrillation [29].  
Table 2.2 presents a comparison of some of the most common smartwatches on 
the market, all using PPG as pulse rate sensor and a 3-axis accelerometer for step 
counting. 

 

Model 
 

 

Accuracy of pulse 
rate measurements 

 

Accuracy of 
step counting 

BaJery 
life 

 

Additional 
functionalities 

 

Fitbit 
Sense 2 

~4-6% error during 
physical activity 

 

~3-5% error 
Up to 6 

days 

Electrodermal 
activity, SpO2, 

stress 

Garmin 
Venu 2 

~1-3% error both at 
rest and during 

exercise 

 

~1.5-2% error 
Up to 

11 days 
SpO2, GPS 

E4 
Wristban

d 

~1-2% error at rest, 
2.7% during 

physical activity 
~1-2% error 

Up to 
36 

hours 

Electrodermal 
activity, skin 
temperature 
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Omron 
HeartGui

de 

~3-4% error for HR 

 

~3% error 
Up to 

2-3 
days 

ECG, SpO2, 
estimation of 

blood pressure 

Samsung 
Galaxy 
Watch 6 

~2.3% average error 

 

~1-2% error 
Up to 

40 
hours 

ECG, SpO2, 
body 

composition 
analysis 

Apple 
Watch 9 

~1.6% error at rest, 
~2.5% during 

intense exercise 
~1-2% error 

Up to 
18 

hours 

ECG, SpO2, 
GPS, fall 
detection 

Table 2.2 – Comparison of the major smartwatches 

 
As shown in Table 2.2 devices like the Garmin Venu 2 and Apple Watch 9 feature 
highly refined step-counting algorithms, offering excellent accuracy both during 
normal and sport activities. The Fitbit Sense 2 and Omron HeartGuide are less 
accurate in step counting, especially during high-intensity activities or complex 
movements [30]. 
 
The exploration of wearable technology highlights the transformative potential 
of smartwatches and fitness trackers in monitoring physical activity and 
physiological parameters. However, despite their widespread adoption, the 
accuracy of these devices often falls short, particularly in step counting. 
Variability in user activity, environmental conditions, and algorithmic limitations 
are key factors contributing to inconsistent performance. 
 
Proprietary algorithms used in commercial devices, while optimized for general 
use, lack transparency and adaptability. This creates a critical gap for researchers 
aiming to improve these technologies. Open-source platforms, such as Bangle.js, 
address this limitation by offering accessible and modifiable algorithms, 
fostering collaboration and innovation. 
 
The lack of standardized validation datasets remains a significant barrier to 
advancing wearable accuracy. Shared datasets capturing diverse activities and 
user behaviors are essential for benchmarking algorithms, improving their 
robustness, and ensuring their applicability across a wide range of scenarios. 
 
This work seeks to bridge these gaps by leveraging the open-source capabilities 
of Bangle.js to evaluate and enhance step-counting algorithms. By generating and 
analyzing comprehensive datasets and comparing algorithms against gold-
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standard references, this study lays the groundwork for improving both the 
accuracy and adaptability of wearable devices. 
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3  Materials and Methods 

3.1. IMU-based device 
Inertial Measurement Units (IMUs) are electronic devices that combine multiple 
sensors to measure inertial parameters such as linear accelerations, angular 
velocities, and, in some cases, the magnetic field along three spatial axes (x, y, z). 
They are widely used in various applications to detect and track the movement, 
position, and orientation of an object or person in three-dimensional space. In 
this project, an IMU-based device, developed at Politecnico di Milano, was placed 
on the participants’ shoe and used as ground truth for step counting. 

3.1.1. Hardware 
The device’s components [31] are shown in Table 3.1:[32] 
 

Component Description 

nRF52840 
microcontroller 

 

The MDBT50Q-1MV2 module by Raytac is built on the 
Nordic nRF52840 SoC. It offers interfaces like GPIO, SPI, 

UART, I2C, ADC, NFC, and USB for connecting 
peripherals, and includes a chip antenna and a 32 MHz 

crystal, simplifying PCB design. The nRF52840 features a 
64 MHz Cortex M4F CPU, 1 MB Flash, and 256 kB RAM. 

It supports voltage inputs of 1.8–5.5 V in high voltage 
mode and up to 3.6 V in normal mode. The antenna 

output power, adjustable via firmware, ranges from -20 
dBm to +8 dBm. 

 

LSM6DSO 6-axis 
IMU 

 

The LSM6DSO is a compact 6-axis IMU by STM 
Microelectronics, combining a 16-bit accelerometer (±2 to 

±16 g) and a 16-bit gyroscope (±125 to ±2000 dps). It 
features event detection (e.g., free fall, motion, wake-up, 

step counting), a 9 kB FIFO for power efficiency, and 
Sensor Hub capabilities for managing external sensors 

via I2C or SPI. It operates at 1.8–3.6 V, consumes 0.55 mA 
in high-performance mode, and comes in a 2.5 x 3.0 x 

0.83 mm LGA package. 

LIS2MDL 
magnetometer 

 

The LIS2MDL is a 3-axis 16-bit digital magnetometer 
with a ±50 gauss range. It supports 1.8–3.6 V supply, I2C 

and SPI communication. 
Combined with a 6-axis IMU like the LSM6DSO, it 

creates a 9-axis sensor system. It is available in a compact 
2.0 x 2.0 x 0.7 mm LGA package. 
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LM3671MF Buck 
DC-DC converter 

 

The LM3671MF-3.3/NOPB by Texas Instruments is a 
Buck converter ideal for low-voltage circuits. It supports 
an input range of 2.7 V to 5.5 V and can supply up to 600 

mA, which is sufficient for this application. The 
converter automatically switches between PWM and 

PFM modes for optimal efficiency. It comes in a compact 
SOT-23 package (2.9 x 1.6 mm) and requires only three 
external components: an inductor and two capacitors. 

 
MCP73831/2 LiPo 

charger 
 

The MCP73832 by Microchip is a linear charge 
management controller designed for efficiently charging 

LiPo baCeries via USB. It uses a constant-
current/constant-voltage charging algorithm, with 
adjustable preconditioning and termination via an 
external resistor. For the project, the 5-lead SOT-23 

package was chosen. 

 
BJT and MOSFET 

 

High-side MOSFET circuits were selected for two 
purposes: baCery voltage sensing and reducing the 

power consumption of the SD card. A high-side MOSFET 
circuit was chosen for baCery sensing. Similarly, to 

power off the SD card during idle periods and minimize 
power dissipation, a high-side MOSFET circuit was 

employed. 
The MOSFETs were selected based on experimental 

testing using electronic circuit simulators like LTSpice 
and breadboarding, where various low-threshold P-

MOSFETs from Microchip were evaluated. The TP2640 
was selected for baCery sensing, while the LP0701 was 

chosen for controlling the SD card. Both are available in 
8-lead SOIC packages. For both circuits, the NPN BJT 

used is the MMBT3904-AQ from Diotec Semiconductor 
(SOT-23 package). 

 

 
Connectors 

 

The PCB includes three connectors. The first is a MOLEX 
micro-USB type B connector, which serves both for 

charging the LiPo baCery and for USB communication 
with the host PC. 

The second connector is a JST 2-pin male header with a 1 
mm pitch, designed for connecting the LiPo baCery. A 

matching female header is necessary for the connection. 
For the SD card, the chosen connector is the Adafruit 

1660, a push-pull type that provides excellent stability 
and durability during the development process. 
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Switch and 

buJon 
 

The KSS231GLFS temporary switch is used to activate 
the OTA firmware update mode during startup. 

To power the device on and off, a through-hole sliding 
switch is employed. The chosen model, EG1213, ensures 
greater mechanical durability and long-term reliability. 
The actuator, measuring 5 mm in length, is long enough 

to extend beyond the case and be operated manually. 
 

 
Red LED/ Yellow 

LED 
 

A RED LED from Lumex Opto Components provides 
user feedback, matching the type used in Lucchesini's 
version. The LED has a forward voltage of 1.7 V and a 

current draw of 3.40 mA when powered on, despite the 
datasheet suggesting 20 mA, as it was found 

experimentally that 3.40 mA was sufficient for 
brightness. 

Additionally, a yellow LED by Wurth indicates the 
baCery charging status. When the baCery is charging via 
USB, the LED stays on until the baCery is fully charged. 

 
 

Lipo baJery with 
3.7 V nominal 

voltage 
 

A 3.7 V rechargeable LiPo baCery was chosen to avoid 
frequent replacements. A 150 mAh baCery (25x20x5 mm) 
was selected for its compact size, compatibility with the 
PCB case, and ability to power the device for several 
hours, depending on the acquisition type 

Table 3.1 - IMU-based device's components 

Figure 3.1 and Figure 3.2 illustrate the design of the case (lower part in Figure 3.1, 
upper part in Figure 3.2). The material selected for the case is DraftGrey, a rigid 
material designed specifically for the Super High Speed print mode, producing 
models with medium opacity and smooth finish.  The version of the case used in 
this Thesis features a slot for an elastic strap to secure it to the foot. 
 

 
Figure 3.1 - Lower part of the case 



   
 

  
 

29 

 
Figure 3.2 - Upper part of the case 

3.1.2. ANT transmission protocol 
Data from the IMU-based device transmiCed using the ANT transmission 
protocol, a low-power and short-range wireless communication method, 
specifically designed for sensor networks. ANT operates in the 2.4 GHz ISM 
band, optimizing energy consumption through low data rates (20-60 kbps), short 
transmission periods, and deep sleep modes, making it ideal for applications 
requiring long baCery life, such as wearable health monitors.  
The ANT communication network in this application utilizes a star topology, 
allowing data acquisition from multiple devices simultaneously, although only 
one device is used in this specific study. Each device operates as a master node 
and connects to a smartphone equipped with an ANT USB2 stick, which serves 
as the slave. A low-frequency shared channel manages the control of all devices. 
The ANT USB2 stick can handle up to 8 communication channels, with a total 
combined data rate of 190 Hz for 8-byte data payloads in broadcast mode. After 
allocating 5 Hz for the control channel, 185 Hz remains available for data transfer. 
For ease of computation when multiple devices are active, the data rate is capped 
at 180 Hz. 
Given the shared nature of the platform, bandwidth is distributed among the 
three IMU units used in this study. Each device operates within a calculated 
maximum data rate based on the total bandwidth divided by the number of 
active devices. In this case, with 5 Hz reserved for the control channel and three 
IMUs sharing the remaining bandwidth, the effective maximum data rate per 
device is 60 Hz. 
The data transmission rate is further influenced by the number of sensors active 
on each device, as sensor outputs occupy space in the ANT packet payload. 
Applying the bandwidth and data rate equations: 
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3.1.3. Mobile Android application 
A smartphone application to collect data from the device was developed in 
Android Studio during a previous Thesis work and provides a user-friendly 
interface for patients and caregivers to manage the device and collect data.  
Through this application, users can configure the system to meet their specific 
requirements. After completing authentication and selecting a patient or 
participant, users can customize various parameters, including: 

• Number of IMU units: The application allows users to specify the number 
of IMU-based devices for data acquisition. While three units are currently 
available, the system is designed to support additional units in the future. 

• Sensor selection: Users can choose which sensor data to collect, with any 
combination of accelerometer, gyroscope, and magnetometer outputs 
supported. 

• Sensor sensitivity: Sensitivities for the accelerometer and gyroscope can 
be adjusted based on the acquisition needs. Available accelerometer 
sensitivity seCings are ±2 g, ±4 g, ±8 g, and ±16 g, while gyroscope 
sensitivities include ±125 dps, ±250 dps, ±500 dps, and ±1000 dps. 

• Sampling frequency: Users can set the desired data rate (in Hz) via a text 
box. The maximum allowable frequency depends on the number of IMU 
units and sensors selected, as discussed in Section 2.2. The application 
provides on-screen guidance to ensure valid frequency input. 

• SD card backup: Users have the option to enable backup data storage on 
the SD card. If selected, they can also assign a custom file name for the 
backup. If this option is not selected, the data will be stored in the cloud 
using Google Firebase. 

 

3.2. Bangle.js smartwatch 
 
The Bangle Js.2 [2] is an open-source smartwatch. Designed and produced by 
Espruino, it is fully programmable using JavaScript. Espruino is known for being 
energy-efficient and easy to use, allowing developers to write code quickly and 
with fewer resources compared to more complex programming languages. 
The Bangle Js.2 has numerous technical features that enhance its functionality, 
making it extremely versatile for multiple uses, such as monitoring certain health 
parameters. 
The device, shown in Figure 3.3, is equipped with a 1.3-inch color transflective 
LCD touchscreen with a resolution of 176x176 pixels. This type of screen is 
designed to be clearly visible even in strong sunlight, which is a useful feature 
for outdoor use. 
The smartwatch features a 200mAh baCery, which guarantees an average 
autonomy of about 2 weeks with moderate use. The energy efficiency is 
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improved by low-power technologies, making this smartwatch ideal for daily use 
and prolonged activities without the need for frequent recharging. 
The Bangle.js 2 includes a series of sensors useful for monitoring health and 
physical activities. Among them: 

• 3-axis accelerometer: useful for tracking movements, steps, position 
detection, and gesture control. 

• PPG pulse rate sensor: useful for real time pulse rate monitoring. 
• Ambient light sensor: which automatically adjusts the brightness of the 

display based on the surrounding environment, improving user 
experience and optimizing energy consumption. 
 

 
Figure 3.3 - Bangle.js smartwatch 

The Bangle.js 2 is equipped with Bluetooth Low Energy (BLE) connectivity, 
which enables interaction with smartphones, tablets, and computers for data 
synchronization, notification reception, and firmware updates. The BLE 
connection is also essential for developing applications that require interaction 
with other devices. BLE is widely used for short- range wireless communication. 
and is well-suited for medical applications where low power consumption is 
critical. It supports small bursts of data transfer over a short range (up to 100 
meters), which is often sufficient for connecting wearable devices like 
smartwatches or medical sensors to smartphones or computers. Unlike ANT, 
Bluetooth operates with higher data rates but has greater power consumption.  
Compared to other smartwatches on the market, the Bangle.js 2 allows for 
advanced customizations and the development of personalized applications, 
thanks to its open-source nature, giving users full control over the device's 
functionalities. 
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3.3. Polar H10 Band 
The Polar H10 is a high-precision chest-worn heart rate sensor designed for 
sports, fitness, and research applications. It features advanced electrodes 
embedded in a soft, adjustable strap that adhere securely to the skin, ensuring 
optimal contact for accurate and reliable heart rate monitoring. The sensor is 
compatible with Bluetooth, ANT+, and 5 kHz transmission, allowing seamless 
connectivity to a wide range of devices, including smartphones, smartwatches, 
fitness equipment, and GPS devices. With a water resistance of up to 30 meters, 
it is suitable for swimming and other water-based activities. The H10 also 
includes onboard memory for standalone data recording, making it convenient 
for activities without a paired device. Powered by a CR2025 coin cell baCery, it 
offers an impressive baCery life of up to 400 hours. Its high accuracy and 
versatility make it a trusted choice for both athletes and researchers.  

3.4. Experimental Protocol 
3.4.1. Population characteristics 
For the data acquisition 20 healthy participants were recruited at the Politecnico 
di Milano (Table 3.2, 11 men and 9 women, mean age 27.9 ±	8.7 years, mean 
weight 70.8 ± 10.7 kg, mean height 174.5 ± 8.2 cm). 
 

Participant 
number 

Age 
[years] 

Sex Weight [kg] Height [cm] 

1 24 F 73 168 
2 24 F 60 168 
3 25 M 69 170 
4 24 M 69 170 
5 24 M 70 186 
6 26 M 76 185 
7 28 M 76 180 
8 24 F 54 163 
9 29 F 65 165 
10 27 M 77 180 
11 24 M 100 193 
12 27 M 68 184 
13 27 F 68 168 
14 24 F 63 174 
15 24 M 80 180 
16 25 F 60 170 
17 22 F 58 175 
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18 57 M 80 175 
19 25 M 64 170 
20 48 F 85 165 

Table 3.2 - Population characteristics 

3.4.2. Set-up 
The data acquisition protocol involved using the three previously mentioned 
devices on each participant: a Bangle.js smartwatch worn on their preferred wrist 
(introducing interpersonal variability), an IMU-based unit housed in a custom 
case aCached to the right foot with a strap (Figure 3.4) and a Polar chest strap. 
The IMU-based unit was connected to its associated smartphone application via 
the ANT protocol, with data stored locally on an SD card for reliability and 
simultaneously transmiCed via Google Firebase.  

 
Figure 3.4 - IMU- based device inside the case 

 
The IMU-based was configured with a sampling frequency of 100 Hz and a 
dynamic range of ±4g. Figure 3.5 shows the seCing for the application.  
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Figure 3.5 - Smartphone application associated with the IMU-based unit. 

In the case of the Polar H10 Band, to improve electrode contact with the skin, 
subjects were instructed to moisten the Polar chest strap’s electrodes. Both the 
Polar strap and the smartwatch connected via BLE to separate web applications, 
which collected the output data files. The smartwatch web application, provided 
by Dario Salvi of University of Malmö, was modified to transmit also raw PPG 
values and confidence levels, while the Polar web application, developed for this 
thesis, generated a file containing the detected BPM values. Figure 3.6 and Figure 
3.7 show the interface of web applications.  

   
Figure 3.6 - Polar streaming web application 
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Figure 3.7 -Bangle.js streaming web application   

 

3.4.3. Data acquisition  
Once the devices were properly positioned on the participant, a sequence of 
activities was started, each designed to collect specific data under different 
conditions. The activities were performed in a pre-established order, ensuring a 
well-structured progression. 
There were 5 different activities: ‘light task’ (5 minutes), ‘complete rest’ (3 
minutes), ‘indoor activity’ (14 minutes), ‘stair climbing’ (2 minutes), ‘outdoor 
walk’ (~15 minutes). The protocol chosen for the activities is a well-established 
and tested approach, as referenced in [33]. Figure 3.8 shows an overview of the 
activities performed with their respective durations.  
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Figure 3.8 - Acquisition protocol 

 
During the first activity (‘light task’), the participant performs a computer-based 
task. This type of activity is low intensity and requires the volunteer to remain 
seated, performing simple operations that do not involve significant movements, 
such as using a mobile phone or computer. The duration of this phase is 5 
minutes. 
After the computer task, the participant enters the ‘complete rest’ phase, during 
which they must not perform any movement. This phase is important for 
collecting baseline data under conditions of total absence of movement and lasts 
for 3 minutes. 
Next, the participant moves on to the treadmill (‘indoor activity’). This exercise 
is structured in several phases, each with a specific speed to test different 
intensities of movement. The first phase involves 2 minutes of baseline, during 
which the participant remains stationary on the treadmill without walking. 
Walking begins at a speed of 3 km/h for 3 minutes, a slow and relaxed pace. Then, 
the speed increases to 4 km/h for 3 minutes, a moderate yet comfortable pace. 
Finally, the participant walks at 5 km/h for another 3 minutes, representing a 
brisk pace. The treadmill activity concludes with a 3-minute recovery phase, 
during which the participant returns to a resting condition. 
The fourth activity is ‘stair climbing’, a more intense exercise that involves 
walking up four flights of stairs, with a total duration of approximately 2 
minutes. 
Finally, the participant performs an outdoor activity, walking a 1030-meter route 
(‘outdoor walk’). During this route, continuous walking is required, with the only 
exception being brief 15-second stops at pedestrian crossings. The route is 
completed in about 15 minutes. Figure 3.9 shows the route of outdoor activity. 
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Figure 3.9 -Outdoor route 

Between each phase, all the devices worn by the participant are turned off, and 
the corresponding applications are restarted. This procedure was adopted to 
ensure that each phase of the experiment generates a separate data track, 
allowing for accurate and segmented analysis of the various activities. In fact, at 
the end of each activity, three output files, one from each device, were produced 
and used for subsequent data analysis. In this way, the collected data can be 
clearly distinguished based on the type of activity performed, facilitating the 
subsequent processing and interpretation of the results. 
 

3.5. Pre-processing 
In this Thesis, only data regarding the steps are considered, therefore the data 
obtained from the Polar band were not analyzed. 
To ensure an accurate and consistent analysis of the data collected from the 
Bangle.js and IMU-based devices, a preliminary phase of pre-processing was 
introduced. This phase allowed us to organize, clean, and synchronize the data 
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from the various devices, which provided information in different formats and 
temporal resolutions. Such pre-processing proved crucial for correctly 
comparing the measurements and preparing the data for further analysis. 
In particular, the focus was on the comparison between the steps recorded by the 
Bangle.js and those from the IMU-based device, used as the gold standard.  
The first phase involved managing the data from the IMU-based device, which 
was positioned on the participant's shoe and recorded movements through 
acceleration across three dimensions (x, y, z). After extracting the raw data, we 
cleaned it by eliminating any anomalies, then converted the measurements into 
real acceleration values, measured in mg, and synchronized the samples with the 
temporal data from the other devices. Subsequently, we ploCed the data on 
graphs to visualize changes in movement during different activities and 
compared the steps recorded by the IMU with those from the Bangle.js. 

3.6. Step counting from the IMU-based device 
From the output files of the IMU-based device, timestamped data on 
accelerations along the three axes (x, y, z) were obtained. These acceleration data 
were used to develop the step counter algorithm used as gold standard for our 
Thesis. The whole process is shown in Figure 3.10: 
 

 
Figure 3.10 - Step counting from the IMU-based device 

 
The algorithm processes the IMU data as follows: 

1. Data loading and preprocessing: The algorithm begins by reading data 
from a specified file. Initial details such as sensors used, data rate, and 
recording time are extracted from the file header. It then reads the main 
dataset, creating a data frame with data fields for each packet recorded by 
the IMU-based device. 

2. Extraction and formaJing of acceleration data: Only acceleration data is 
selected for further processing, filtering out irrelevant fields. The raw 
hexadecimal data is converted to decimal values, adjusted based on IMU 
sensitivity seCings, and scaled to milligravity units [mg]. 

3. Timestamp calculation: The algorithm calculates timestamps for each 
data point based on the start time and sampling rate (100 Hz). These 
timestamps are converted to Unix time format (in milliseconds), allowing 
for a consistent time scale for further analysis. 
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4. Acceleration magnitude calculation:The algorithm calculates the total 
acceleration magnitude for each data point using the three-axis data (X, Y, 
Z) with the formula:  

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 8𝑥+ + 𝑦+ + 𝑧+ 
This measure helps to reduce noise from individual axes and provides a 
single scalar value for each time point. 

5. Filtering with low-ass filter: A low-pass FIR (Finite Impulse Response) 
filter is applied to the acceleration magnitude to smooth out high-
frequency noise. The cutoff frequency is set to 3 Hz, which allows a variety 
of walking speeds, and a Hamming window with 300 taps is used. The 
filter minimizes noise due to rapid, insignificant movements while 
preserving relevant movement paCerns. 

6. Step detection with threshold-based peak identification: To detect steps, 
a threshold is calculated based on the mean and standard deviation of the 
filtered acceleration magnitude as follow:  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚𝑒𝑎𝑛,&-"#$!.) + 𝑛 ∗ 𝑠𝑡𝑑_𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 
The value of 𝑛 was chosen by comparing the numbers of steps obtained 
with the step counter and the numbers of steps obtained with a manual 
count. In particular:  

o 𝑛 = 1 for light activity, rest activity, outdoor activity 
o 𝑛 = 0.19 for stairs activity 
o For the treadmill activity  

1. 𝑛 = 0.1 for the speed 3 km/h 
2. 𝑛 = 0.7 for the speed 4 km/h 
3. 𝑛 = 1 for the speed 5 km/h 

Peaks that exceed the threshold are identified as steps. The algorithm 
checks for crossings of the threshold in the upward direction to prevent 
multiple detections of a single step within proximity. 

7. Visualization and export: The filtered acceleration magnitude and 
detected steps are ploCed over time for visualization, with the threshold 
shown as a reference. Finally, the timestamp and step data are saved to an 
Excel file for further analysis, allowing for an exportable record of detected 
steps. 

Figure 3.11, Figure 3.12, Figure 3.13, Figure 3.14, Figure 3.15 show the 
accelerometer signals for different activities are processed during different stages 
of the process.  
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Figure 3.11- Light activity:  Acceleration Components (a), Acceleration Magnitude (b), Filtered Magnitude (c), Peak 

Detection (d) 
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Figure 3.12- Complete Rest:  Acceleration Components (a), Acceleration Magnitude (b), Filtered Magnitude (c), Peak 

Detection (d) 
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Figure 3.13- Indoor activity:  Acceleration Components (a), Acceleration Magnitude (b), Filtered Magnitude (c), 

Peak Detection (d) 



   
 

  
 

43 

 
  

Figure 3.14- Stairs Activity:  Acceleration Components (a), Acceleration Magnitude (b), Filtered Magnitude (c), Peak 
Detection (d) 
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Figure 3.15- Outdoor Activity:  Acceleration Components (a), Acceleration Magnitude (b), Filtered Magnitude (c), 

Peak Detection (d) 
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3.7. Step counting from the Bangle.js 
After the data collection phase, this Thesis focused specifically on developing 
step-counting algorithms to be applied on the data from the Bangle.js. Future 
work will extend this approach to adapt these algorithms for pulse rate 
monitoring. 
The algorithms were implemented in C, leveraging the Visual Studio Code 
environment for streamlined development and debugging. The selection of step-
counting algorithms was informed by an extensive preliminary literature review, 
prioritizing methods recognized for their accuracy and resource efficiency, 
critical for wearables where processing power and baCery life are constrained. 
As part of the analysis, six step-counting algorithms were selected and 
implemented:  

i. The Dummy algorithm, a baseline algorithm that performs basic step 
detection. Its purpose is to serve as a point of comparison with more 
advanced algorithms. 

ii. The Bangle Simple algorithm, an earlier open-source version designed 
for the smartwatch 

iii. The Autocorrelation-based algorithm 
iv. The Espruino algorithm, pre-installed on the Bangle.js smartwatch 
v. The Fast Fourier Transform-based algorithm.  
vi. The Oxford algorithm, a project developed by Jamieson Brynes at the 

University of Oxford 
The implementation details, performance evaluations, and comparisons of these 
algorithms are discussed in the following sections.  
 

3.7.1. Benchmarking framework 
The first step was the creation of a benchmarking framework to systematically 
test and compare the performance of multiple step-counting algorithms. The 
framework allows for the simultaneous execution of several algorithms on the 
same dataset, consisting of accelerometer data collected during the data 
acquisition of the previous experimental campaign.  
The structure of the benchmark is flexible and modular, enabling the inclusion of 
different algorithms with specific initialization processes and step-counting 
functions. Once the algorithms are loaded, the accelerometer data collected from 
the Bangle.js smartwatch, stored in .csv format, is processed by each algorithm. 
The total step counts calculated by each algorithm are then compared to the step 
counts obtained from the algorithm using accelerometer data derived from the 
IMU-based device. The benchmark framework manages variations in time 
intervals and data formats to ensure consistent evaluation across all algorithms. 
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3.7.2. Dummy algorithm 
The Dummy step counter algorithm is a simple implementation designed to 
serve as a baseline for comparison with more complex step-counting algorithms. 
Its logic is intentionally straightforward, providing a basic reference point. This 
algorithm was also used to eliminate other algorithms performing below this 
baseline, ensuring that only methods demonstrating greater accuracy and 
reliability were retained for further analysis. The whole process is shown in 
Figure 3.16: 

 
Figure 3.16 - Dummy algorithm 

The algorithm works as follows: 
• Initialization. At the beginning, the algorithm initializes a variable 

(dummy_time_passed) that tracks the total elapsed time. A movement 
detection buffer is also set up using a circular buffer structure. This buffer 
is used to store accelerometer data for detecting movement.  

• Movement detection. For each new accelerometer sample, the algorithm 
calculates the magnitude of the acceleration vector. This is done using the 
Euclidean norm of the accelerometer data across the x, y, and z axes. The 
calculated magnitude is then passed to a movement detection function 
(discussed in the following paragraphs), which determines whether the 
device is currently moving. 

• Step counting. If movement is detected and there has been a time 
increment, the algorithm accumulates the total time passed since the start 
of the activity. Instead of detecting individual steps, the Dummy 
algorithm assumes a constant rate of steps per second (in this case, 2 steps 
per second). It simply multiplies the total time passed by this step rate to 
estimate the total number of steps, as shown in the following equation:  

𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑝𝑠 = 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒_𝑝𝑎𝑠𝑠𝑒𝑑 × 𝑠𝑡𝑒𝑝_𝑟𝑎𝑡𝑒 

3.7.3. Bangle- simple algorithm 
The Bangle simple step counter is a straightforward algorithm designed to detect 
steps based on changes in acceleration. It is one of the original step-counting 
algorithms developed for the Bangle.js smartwatch, using minimal logic to 
identify steps by analyzing the magnitude of the acceleration vector. The entire 
process is illustrated in Figure 3.17: 
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Figure 3.17 - Bangle algorithm 

The algorithm works as follows: 
1. Initialization. The algorithm starts by initializing two key variables: 

o bangle_simple_StepWasLow: a boolean flag that tracks whether the 
acceleration magnitude has fallen below a predefined threshold. 

o bangle_simple_StepCount: a counter that tracks the total number of 
steps detected. 

During initialization, the step counter is reset to zero, and the flag is set to 
false. 

2. Thresholds. The algorithm uses two predefined thresholds to detect step 
paCerns: 

o bangle_simple_ThresholdLow: this defines how low the squared 
acceleration magnitude must fall before the algorithm considers the 
next rise a potential step. 

o bangle_simple_ThresholdHigh: this defines how high the squared 
acceleration magnitude must rise for it to be recognized as a step. 

These thresholds are designed to capture the characteristic up-and-down 
motion of a step. 

3. Step detection logic. For each accelerometer sample (with acceleration 
data in the x, y, and z axes), the algorithm calculates the squared 
magnitude of the acceleration vector. The logic is based on comparing the 
acceleration magnitude against predefined thresholds, specifically: 

o Low Threshold Check: if the squared acceleration magnitude falls 
below the bangle_simple_ThresholdLow, the flag 
bangle_simple_StepWasLow is set to true, indicating that the 
acceleration has dropped low enough for a possible step. 

o High Threshold Check: if the squared magnitude exceeds 
bangle_simple_ThresholdHigh and the bangle_simple_StepWasLow flag 
is true, a step is detected. The flag is reset to false, and the step 
counter is incremented. 

4. Output. The algorithm returns the updated step count after each 
accelerometer sample is processed. This step count is based on the 
detection of the low-to-high transitions in the acceleration magnitude, 
which correspond to the characteristic motion of a step. 
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3.7.4. Espruino algorithm 
The Espruino step counting algorithm [33] is a more advanced approach 
compared to simpler threshold-based methods. It involves filtering 
accelerometer data, applying a state machine to detect valid steps, and 
maintaining a history of detected steps to improve accuracy. The full procedure 
is depicted in Figure 3.18: 
 

 
Figure 3.18 - Espruino algorithm 

 
The algorithm works as follows: 

1. Initialization. The algorithm begins by initializing necessary components: 
a. Step count state machine: the step counter uses a state machine to 

track the progression of detected steps. 
b. Acceleration filters: the algorithm initializes filters to smooth out 

noise in accelerometer data, ensuring that only valid step-like 
movements are considered. 

c. DC filter: This filter removes the direct current (DC) component 
from the signal to ensure that variations around a mean value are 
detected, which is essential for detecting steps. 

The stepcount_init() function sets the initial values for the various filters 
and state machine, preparing the algorithm to begin processing 
accelerometer data. 

2. Accelerometer data processing. The core of the algorithm processes 
accelerometer data at a frequency of 12.5 Hz. The squared magnitude of 
the accelerometer data (x, y, z axes) is calculated. This value is passed 
through multiple filters: 

a. DC Filter: removes the DC component from the signal, allowing the 
algorithm to focus on relative changes in movement. 

b. Moving Average Filter: a 7-tap FIR filter smooths the data to reduce 
noise and to eliminate small fluctuations in the acceleration signal. 
This filter uses a predefined set of weights (taps) to apply to the 
accelerometer data points, improving the detection of significant 
movement paCerns. 

3.  Step detection logic. After filtering, the algorithm evaluates whether the 
magnitude of acceleration crosses certain thresholds to indicate a step: 
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a. Step History: the algorithm maintains a history of detected steps to 
avoid counting noise or small motions as steps. A step is only 
counted if it occurs in a sequence of valid steps, ensuring that step 
detection is consistent and avoids false positives. 

b. Thresholds: the algorithm uses a state machine to track whether the 
acceleration exceeds certain thresholds within a defined time 
window. If the signal passes a low threshold, the algorithm expects 
a rise above a higher threshold to confirm a step. 

4. State machine for step counting. The state machine ensures that only 
valid steps are counted. It tracks the progression of step-like movements 
and ensures they occur within the expected time intervals. Table 3.3 shows 
the states used:  
 

S_STILL The initial state, where no steps are detected 

S_STEP_1 
The algorithm detects the first step and begins tracking 
the time until the next step. 
 

S_STEP_22N 

This state is used when multiple steps are detected in 
sequence. The algorithm expects a certain number of 
steps (X_STEPS) within a specified time range to 
confirm consistent walking. 
 

S_STEPPING 
Once a valid sequence of steps is detected, the 
algorithm enters this state and continues counting 
each step detected within the expected time frame. 

Table 3.3 - State machine 

If the steps occur too quickly or too slowly, the state machine resets, 
avoiding false positives. 

5. Espruino Step Counter Wrapper. The Espruino wrapper is a simple 
interface that uses the step counting logic defined above. It takes 
accelerometer samples and processes them using the core step-counting 
logic. The wrapper keeps track of the cumulative step count and returns it 
after each sample is processed. This wrapper simplifies the integration of 
the algorithm with the Espruino platform by abstracting the underlying 
details of filtering and state machines, making it easy to use in real-time 
applications on wearable devices. 

6. Output. The algorithm continuously tracks the number of steps based on 
the filtered accelerometer data. Each valid step is added to the total count, 
and the step history ensures that steps are not counted multiple times if 
they occur too quickly or irregularly. 
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3.7.5. Autocorrelation algorithm  
The autocorrelation algorithm is based on the work by Neraj Bobra [34], which 
performs step counting by analyzing the accelerometer signal through an 
autocorrelation process. The sequence of operations includes filtering, mean 
removal, autocorrelation calculation, and peak evaluation within the 
autocorrelation function to identify valid steps. The complete process is 
presented in Figure 3.19:  
 

 
Figure 3.19 - Autocorrelation algorithm 

 
The algorithm works as follows: 

1. Low-Pass Filtering. The first step involves applying a low-pass filter to the 
accelerometer signal to reduce high-frequency noise and preserve the 
components relevant to step movement. The lowpass_buffer() function 
takes the magnitude of the raw accelerometer signal buffer as input and 
returns a filtered buffer using an LPFilter structure. 

2. Mean Removal. The mean of the signal is removed using the 
remove_mean() function. This centers the signal around zero, improving the 
accuracy of the subsequent autocorrelation and reducing the impact of 
low-frequency variations that are irrelevant for step counting. Figure 3.20 
shows an example of how the signal, within a window of 50 tuples, 
changes after the magnitude calculation, filtering and averaging removal 
stage. 

 
Figure 3.20-Magnitude, Filtered and Removed mean 
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3. Autocorrelation Calculation. The autocorr() function calculates the 
autocorrelation of the filtered signal using a predefined buffer with a 
number of lags set by the constant NUM_AUTOCORR_LAGS. In this case, 
NUM_AUTOCORR_LAGS is set to 16, chosen to cover a range of typical 
walking frequencies. This approach assumes a sampling frequency of 12.5 
Hz (e.g., 1000 ms / approximately 80 ms sampling period). This lag choice 
is sufficient to cover frequency ranges from walking to running, where the 
maximum step frequency can be up to around 3 steps per second (333 ms 
per step, corresponding to 4 lags). 

4. Derivative Calculation. To detect the first positive peak, the derivative of 
the autocorrelation function is calculated using the derivative() function. A 
derivative filter with the constant DERIV_FILT_LEN = 7 is used, applying 
the coefficients stored in deriv_coeffs. The derivative is used to identify sign 
changes indicating peaks in the autocorrelation signal, specifically 
transitions from positive to negative values. Figure 3.21 shows an example 
of the peak present in the autocorrelation signal being indicated by the 
change of sign of the derivative, from positive to negative.  

 
Figure 3.21- Peak detection through derivative phase 

5. Peak Identification and Precise Position Determination. The function 
searches for the first peak in the derivative that meets the positive-to-
negative sign transition criteria starting from the constant 
FIRST_AUTOCORR_PEAK_LAG, set to 4, to avoid non-representative 
peaks (e.g., noise). The exact peak position is refined with 
get_precise_peakind(), which verifies that surrounding values are lower 
than the current peak value. 
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6. Validity Check for the Peak. To ensure the detected peak is significant 
enough and truly represents a step, the code checks several parameters 
using the get_autocorr_peak_stats() function: 
• Number of Points in Descent and Ascent: the code verifies that there 

are at least two points with negative and positive slope 
(AUTOCORR_MIN_HALF_LEN = 2) to the right and left of the peak, 
respectively, ensuring that the peak is well-defined. 

• Amplitude Delta Between Peak and Valley: the amplitude difference 
between the peak and the minimum points (valleys) to the left and 
right of it is calculated. This difference must exceed a threshold 
(AUTOCORR_DELTA_AMPLITUDE_THRESH = 1e6) to avoid 
considering very small peaks or noise. 

7. Step Counting. If all the above conditions are met, the peak is considered 
valid for step counting. The step count is calculated by dividing the 
sampling frequency (SAMPLING_RATE) times the time window length 
(WINDOW_LENGTH) by the peak position (peak_ind), which represents 
the period of the signal. 
 

Table 3.4 presented the values of the parameters used in the defines, along with 
an explanation of their selection. 
 

Define Value Explanation 

NUM_TUPLES 50 

Specifies the number of 
samples collected over an 

interval of 4 seconds. 
Together with 

SAMPLING_RATE, it 
determines the size of the 
data buffers and window 

for autocorrelation 
calculations. 

WINDOW_LENGTH 
(NUM_TUPLES / 

SAMPLING_RATE) 

Length of the time 
window in seconds, based 
on the number of samples 
and sampling rate. Here, it 

is set to 4 seconds. 

NUM_AUTOCORR_LAGS 16  

The choice ensures that the 
autocorrelation function 
captures a full step cycle, 

providing enough 
coverage for step 

frequencies ranging from 1 



   
 

  
 

53 

to 3 steps per second, with 
some additional lags to 
improve accuracy and 

handle noise at a 12.5 Hz 
sampling rate 

FIRST_AUTOCORR_PEAK_LAG  4 

The choice for the first 
feasible autocorrelation lag 

corresponds to the 
minimum number of 

samples required to cover 
a 333 ms step cycle (step 
rate of 3 step per second) 
at a 12.5 Hz sampling rate 
(333 ms / 80 ms per sample 

≈ 4). 
Table 3.4 - Defines used in Autocorrelation algorithm 

3.7.6. Fast Fourier Transform algorithm  
In the case of the Fast Fourier Transform (FFT) algorithm, the code implements 
an algorithm for step counting by analyzing the accelerometer signal through the 
FFT. The sequence of operations includes data collection, segmentation into time 
windows, analysis of the dominant frequency within each window, and 
calculation of the total number of steps. The entire workflow is demonstrated in 
Figure 3.22: 
 

 
Figure 3.22 - Fast Fourier Transform algorithm 

Below is a detailed explanation of the key steps involved in the process. 
1. Data Preparation. The first phase of the process involves collecting 

acceleration data. The raw signal, consisting of accelerations along the x, 
y, and z axes, is combined into a magnitude of acceleration, calculated as 
the square root of the sum of the squares of the accelerations along the 
three axes. The data is then stored in a circular buffer of length 
WINDOW_LEN (32 samples), which is read and updated continuously 
using a cyclic index, signal_buffer_next_i. Figure 3.23 shows the magnitude 
of acceleration as the sample changes within sliding window.  
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Figure 3.23- Magnitude phase in FFT algorithm 

2. Segmentation into Time Windows. The signal is segmented into time 
windows of length WINDOW_LEN (32 samples). Each window is 
analyzed separately, and it moves by WINDOW_STEP (12 samples) at a 
time. This means each window overlaps with the previous one, allowing 
for a smooth transition between consecutive analyses. 

3. Detection of Significant Movement. After each new sample is added to 
the buffer, the code calculates the magnitude of the signal in each window 
and checks whether the difference between the maximum and minimum 
values in the window exceeds a threshold defined by 
MOVEMENT_DETECTION_THRESHOLD (1500). If the difference 
exceeds the threshold, the system considers that there has been a 
significant movement, indicating a potential step. 

4. Fast Fourier Transform. When significant movement is detected, the code 
prepares the data for frequency analysis by applying the FFT. Each 
window of data is converted into an array of complex numbers, where the 
real values (accelerations) are used as the real part, and the imaginary part 
is set to zero. The FFT is then applied to this data window via the FFT 
function, which performs the Fourier transformation on the signal and 
computes the dominant frequency in the frequency domain. 

5. Identification of Dominant Frequency. Once the FFT is performed, the 
code analyzes the output to find the dominant frequency. The FFT output 
is a series of complex values representing the various frequencies in the 
signal. The code examines frequency indices between MIN_FREQ_FFT_I 
(2) and MAX_FREQ_FFT_I (7), corresponding to the frequency range 
typically associated with steps. The magnitude of each FFT component is 
calculated, and the index corresponding to the frequency with the highest 
magnitude is selected as the dominant frequency. Figure 3.24 shows the 
magnitude of the frequency components of a sliding window. In the 
highlighted window, the index with the highest magnitude corresponds 
to 5. Figure 3.25 shows the dominant frequency detected in consecutive 
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windows, which provides insights into changes in stepping frequency 
(faster/slower steps).  

 
Figure 3.24 -Magnitude of the frequency components between the frequency bins [2;7] 

 
Figure 3.25-Dominant frequency over time 

 
6. Step Count Calculation. Once the dominant frequency is identified, the 

code uses this frequency to calculate the number of steps. The dominant 
frequency (in Hz) is multiplied by the time represented by the window 
step size WINDOW_STEP and divided by the sampling frequency 
SAMPLING_FREQ to determine the number of steps detected in that 
period. This value is then accumulated in the variable total_steps to 
maintain the running total step count. 

7. Return Total Step Count. After processing each window, the total step 
count is updated and returned by the function fft_stepcount_totalsteps(). 
This value represents the cumulative number of steps detected up to that 
point. 
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Table 3.5 presented the values of the parameters used in the defines, along with 
an explanation of their selection. 
 

Define Value Explanation 

WINDOW_LEN 32 

The sliding window contains 32 samples of the 
acceleration signal. This value is chosen to be a 

power of 2, which facilitates the implementation 
of FFT, as it is more efficient when the input size 

is a power of 2. 

WINDOW_STEP 12 

The number of samples the window moves at 
each step. This value allows for overlap between 

consecutive windows and provides a time 
resolution of approximately 1 second with 

sampling frequency of 12.5 Hz. 

MIN_FREQ_FFT_I 2  

These indices define the frequency range to 
focus the FFT analysis on. These values are 
chosen to encompass the frequency range 

typically associated with human steps, ranging 
from 1 Hz to about 3 Hz. 

For N=32 and Fs=12.5 Hz, the indices are 
calculated as follows:  

𝑖 =
𝑓# ∗ 32
12.5 	 , 𝑓𝑜𝑟	𝑖 = 0,1, … ,31	 

Table 3.5 - Defines used in FFT algorithm 

3.7.7. Oxford Algorithm  
The Oxford algorithm is an implementation of a step detection system designed 
for wearable devices in healthcare applications. It is based on the open-source 
algorithm [35] developed by Anna Brondin and Marcus Nordström at Malmö 
University. The system efficiently processes accelerometer data to detect and 
count steps, with a focus on optimizing performance for embedded systems. The 
whole sequence is displayed in Figure 3.26: 

 
Figure 3.26 - Oxford algorithm 

The algorithm works as follows: 
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1. Pre-processing stage. Data from the accelerometer's three orthogonal axes 
(x, y, z) are processed to compute the magnitude:  

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 8𝑥+ + 𝑦+ + 𝑧+ 
The implementation also includes a time scaling mechanism to ensure the 
time values are adjusted to a consistent scale, in milliseconds, for the 
processing of the samples. The time for each sample is updated 
cumulatively by adding the delta time, which is adjusted by the scaling 
factor. The variable cumulative_time tracks the total time in milliseconds.  

2. Filtering stage. A low-pass FIR filter is applied to the accelerometer data 
to remove high-frequency noise, focusing on the relevant signal 
frequencies (below 3 Hz). This stage implements a fixed-point FIR filter, 
optimized for embedded systems, which processes data in batches and 
outputs filtered magnitudes for further analysis. Figure 3.27 shows an 
example of how the accelerometer signal changes after the pre-processing 
and filtering phase.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.27- Pre-processing and filtering stages in Oxford algorithm 
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3. Scoring stage. This stage identifies peaks in the signal by accentuating 

local variations within a moving window of data points. This process 
calculates the average difference between the magnitude of the central 
point in the window and the magnitudes of the other points in the 
window, dividing the window into two parts: left (before the midpoint) 
and right (after the midpoint). 
Left and right differences. The algorithm starts by selecting the central 
point in the window, denoted as M (the midpoint), and then iteratively 
calculates the difference between M's magnitude and each point’s 
magnitude in the left and right half of the window. If we let 𝑥# represent 
each magnitude within the window and 𝑥,the magnitude at the midpoint, 
then: 

𝑑𝑖𝑓𝑓𝐿𝑒𝑓𝑡 = O (𝑥/ − 𝑥#)
,#.0%#"$12

#34

 

This represents the sum of differences for the left side, where each value 
before the midpoint is subtracted from 𝑥,.	Similarly: 

𝑑𝑖𝑓𝑓𝑅𝑖𝑔ℎ𝑡 = O (𝑥/ − 𝑥5)
6#".%67#8)12

53,#.0%#"$92

 

This represents the differences for the right side of the window. 
Scoring peak calculation. Once the differences for the left and right sides 
are obtained, the scoring peak scorePeak is calculated by summing diffLeft 
and diffRight and dividing by the total number of comparisons in the 
window, which is windowSize−1: 

𝑠𝑐𝑜𝑟𝑒𝑃𝑒𝑎𝑘 = .#::;):$9.#::<#-=$
6#".%67#8)12

 
This division provides an average difference, effectively emphasizing 
points that differ most from the central magnitude, hence identifying 
peaks. 

4. Detection phase. The detection phase identifies significant peaks by 
comparing each new data point's magnitude against a dynamically 
updated mean and standard deviation. As each data point is processed, 
the algorithm recalculates the mean and standard deviation based on the 
previous values, allowing it to detect outliers that indicate peaks. Initially, 
the algorithm accumulates enough data points (at least 15) to establish a 
baseline mean and standard deviation. With each new data point, it then 
updates these values incrementally, without needing a full recalculation 
from scratch. The key detection rule checks whether a data point’s 
magnitude exceeds a threshold set relative to the mean and standard 
deviation: 

𝑑𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡.𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 − 𝑚𝑒𝑎𝑛 > 𝜎 × 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑖𝑛𝑡 +
𝜎

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑓𝑟𝑎𝑐 
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Here, threshold_int and threshold_frac control the sensitivity of the peak 
detection. When a data point meets this condition, it’s marked as a peak, 
added to the output buffer, and forwarded to the next processing stage. 
This approach ensures that only significant changes in the data trigger a 
detection, making the system more robust against minor fluctuations. 

5. Post-processing phase. This phase is responsible for ensuring that 
detected peaks are spaced sufficiently apart in time to be considered as 
valid steps. This is done by checking the time difference between 
consecutive data points and discarding those that occur too close together.  
The time threshold ensures that closely spaced peaks are filtered out, 
preventing the detection of multiple steps for a single movement. If the 
current data point has a higher magnitude than the previous one and does 
not meet the time threshold, the algorithm keeps the newer data point, as 
it may indicate a stronger signal. The detection logic can be described by 
the following condition: 

𝑑𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡. 𝑡𝑖𝑚𝑒 − 𝑙𝑎𝑠𝑡𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡. 𝑡𝑖𝑚𝑒 > 𝑡𝑖𝑚𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
If the time difference is greater than the threshold, the data point is 
considered valid, and the step callback is invoked. 

 
In Table 3.6 presented the values of the parameters used in the defines, along with 
an explanation of their selection. 
 

 
 

Define Value Explanation 

FILTER_TAP_NUM 15 
Number of filter coefficients (15). 
Defines the FIR filter's complexity 

and behavior. 

filter_taps[] 12 
Array of FIR filter coefficients used to 

pass low frequencies (0-3 Hz) and 
aCenuate higher ones (4-6.25 Hz) 

MOTION_THRESHOLD 1500 
Threshold for detecting significant 

movement 

WINDOW_SIZE 
 

5 

A window size of 5 allows detecting 
steps quickly, with 5 samples at 12.5 

Hz (one every 0.08 s), making it 
responsive to changes while handling 
up to 3 steps per second (around 333 

ms). 

TIME_THRE 300 
Maximum time between steps (300 
ms). Used to prevent counting too 

rapid steps as separate events. 
Table 3.6 - Defines used in the Oxford algorithm. 
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3.8. Movement Detection Phase 
The movement detection phase operates by analyzing the magnitude of 
acceleration data over a brief, rolling time window. This phase uses a buffered 
moving average approach, which maintains a running history of recent 
acceleration magnitudes. By continuously updating and assessing this buffer, the 
algorithm can identify when significant movement occurs. 
This provides a reliable means of distinguishing movement from stationary 
periods, serving as a preliminary filter before more computationally intensive 
processing. By rejecting periods with minimal variation, the detection phase 
reduces the workload on subsequent stages of the algorithm, thereby conserving 
computational resources. It is particularly useful in wearable devices where CPU 
efficiency is paramount. 
The detection phase also minimizes false-positive detections from minor shifts or 
noise in the signal, improving the accuracy of step-counting and other activity 
recognition algorithms. This approach to movement detection ensures that only 
meaningful acceleration changes, such as those from walking, running, or other 
physical activities, trigger further processing, making it an essential step in step-
counting algorithms designed for wearable devices. 

The algorithm processes acceleration data in the following steps: 

1. Buffer initialization and management. The detection buffer is initialized 
with a defined length, DETECTION_BUFFER_LEN, which is set to hold 
approximately one second of data at a sampling frequency of 12.5 Hz. This 
length allows the detection algorithm to assess a recent history of 
accelerometer readings, capturing both minor and major changes in 
motion. 

2. Updating the buffer. For each new sample, the algorithm adds the latest 
magnitude value to the buffer. When the buffer is full, the oldest data point 
is removed, allowing the buffer to maintain a fixed size. This process 
ensures that only the most recent acceleration values contribute to the 
movement analysis. 

3. Movement detection criteria. The detection logic calculates the range of 
magnitudes within the buffer by finding the difference between the 
maximum and minimum values. If this range exceeds a predefined 
threshold (DETECTION_THRESHOLD), movement is detected. The 
threshold value has been experimentally determined to minimize false 
positives and accurately reflect true movement paCerns. If the difference 
between the maximum and minimum values is below the threshold, the 
sample is classified as non-movement. 
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3.9. Performance metrices  
The benchmark algorithm generates two types of output files: 

1. Summary Table: This file provides a high-level summary of results for 
each input file, detailing the total step count calculated by each algorithm, 
the corresponding number of computational cycles (used to assess the 
computational cost), and the reference step count obtained from the gold 
standard algorithm. 

2. Detailed Step Count Files: For each input file, a separate output file is 
generated with detailed results. The first column contains the timestamps 
in milliseconds, while subsequent columns show the cumulative step 
counts calculated by each algorithm at those specific times, allowing for 
time-matched comparisons. 

In parallel, an additional file is created for each accelerometer data file from the 
IMU-based device, containing timestamps in milliseconds and the cumulative 
step count calculated by the gold standard algorithm. 

Since the Bangle.js smartwatch and the IMU-based accelerometer operate at 
different sampling frequencies (12.5 Hz for the Bangle.js and 100 Hz for the IMU-
based device) and were started at different times, timestamp alignment was 
necessary. This alignment synchronizes the data from both devices, allowing for 
a direct comparison of step counts from each algorithm against the gold 
standard. 

To provide a comprehensive assessment of the step-counting algorithms, a 
detailed approach was implemented, aimed at analyzing how each method 
performs across a variety of real-world activity scenarios. This involved carefully 
segmenting the data into discrete, manageable intervals and calculating specific 
error metrics for each algorithm. By structuring the analysis in this way, the 
results would reflect not only the overall accuracy of each algorithm but also 
reveal its adaptability and consistency under different conditions. 

The data regarding both the number of steps calculated by the various algorithms 
and regarding the reference, were therefore separated into 30-second frames as a 
means of gaining a fine-grained, accurate overview of the behavior of each step-
counting algorithm. This may, in turn, allow for insight into how each algorithm 
performs over short time intervals representative of real-world changes in 
activities and variations in movements. By analyzing these shorter segments, it 
was possible to get a reliable estimate of the actual steps taken during each 
period, minimizing the risk of cumulative errors that can occur when looking 
only at a final total. Segmenting in this manner also made it easier to observe any 
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variability in algorithm performance and how well each method adapted to 
dynamic situations, such as transitioning from rest to high-intensity activity. 
After segmentation, each window from the algorithm-generated file was 
compared with the corresponding window from the reference file using 
performance metrics, which are described in the following sections. 

3.9.1. Error Calculation and Metrics 

For each 30-second segment, different error metrics were calculated as a means 
of quantifying exactly how accurately each of the algorithms was counting steps: 

• Mean Absolute Error (MAE). The MAE is the average difference between 
the algorithm's step count and the reference step count from the IMU. It 
provides a simple measure of overall accuracy. The mean MAE and its 
standard deviation allowed both the accuracy and consistency of each 
algorithm to be quantified. 

𝑀𝐴𝐸 =
1
𝑛O

|𝑦# − 𝑦#|
"

#32

 

where 𝑛	 is the total number of observations (e.g., 30-second windows), 𝑦# 
represents the actual (reference) step count in the i-th observation, and 𝑦#  
is the algorithm’s estimated step count for the i-th observation. 

• Median error and IQR (Interquartile Range).Tthe median error is robust, 
being less affected by extreme values, while the IQR provides the range of 
the middle 50% of errors as an indication of variability.  

𝑀𝑒𝑑𝑖𝑎𝑛	𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑒𝑑𝑖𝑎𝑛	(𝑦# − 𝑦>\) 

𝐼𝑄𝑅 = 𝑄? − 𝑄2 
𝑄2 is the first quartile (25th percentile) of the error distribution, 
representing the value below which 25% of the data fall; 	𝑄?  is the third 
quartile (75th percentile), representing the value below which 75% of the 
data fall. 

• Limits of Agreement LOA: computed as the mean error ± 1.96 standard 
deviations of the error, yielding a range within which most of the 
differences between the algorithm and the reference step counts fall. This 
gives insight into each algorithm's potential range of error. 

𝐿𝑂𝐴 = 𝑚𝑒𝑎𝑛	𝑒𝑟𝑟𝑜𝑟 ± 1.96 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

The code used to calculate these metrics iterated over each of the segmented files, 
comparing the output of each algorithm with the IMU reference step counts. 
These errors were then summarized in a table that could convey a clear picture 
of how each algorithm performed across different activities. 
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3.9.2. Bland-Altman 

To further verify the agreement between the step count of each algorithm and the 
reference of the IMU, a Bland-Altman analysis was performed. A Bland-Altman 
plot provides a visualization of the agreement of each algorithm with reference 
data for every moving window of 30 seconds; it shows possible biases and 
variabilities in error. 

The Bland-Altman method is a statistical approach used to assess the level of 
agreement between two different measurement methods, often employed when 
comparing a new method to a standard or reference method. The process 
involves calculating the difference between the measurements obtained from 
each method for each sample, which reflects how much the new method deviates 
from the reference. 
The average of these differences, known as the mean difference, provides an 
indication of any systematic bias between the two methods. If the mean 
difference is close to zero, it suggests there’s no consistent over- or 
underestimation by one method relative to the other. However, a significant 
mean difference would indicate systematic bias.  
To further assess agreement, the Bland-Altman method defines limits of 
agreement, calculated with the formula reported in the previous section. These 
limits outline a range within which 95% of the differences are expected to lie, 
assuming the differences follow a normal distribution. This range helps to 
understand the degree of variability in the differences and whether they are 
acceptable for practical purposes. 
The Bland-Altman method is commonly visualized with a plot, where the 
differences between measurements are on the y-axis, and the average of each 
measurement pair is on the x-axis. A horizontal line at the mean difference 
represents the bias, while two additional lines indicate the upper and lower limits 
of agreement. This plot is useful for detecting paCerns, such as whether the 
differences are consistent across the range of values or vary depending on the 
size of the measurement. 
If the limits of agreement are narrow and there is no systematic paCern, it can be 
concluded that the two methods have good agreement. 
 

3.9.3. Box plot 
A boxplot is a graphical summary that represents key statistics in a dataset. It 
highlights the central 50% of values, or interquartile range (IQR), as well as any 
outliers, providing a clear view of the data’s distribution, spread, and symmetry. 
This is particularly useful in identifying variability and comparing multiple 
groups. Key components of a boxplot are:  
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1. Box (IQR). The box in a boxplot spans from the first quartile (Q1) to the 
third quartile (Q3), representing the middle 50% of the data, known as the 
IQR. This value helps capture the range of values around the median, 
filtering out the influence of extreme values. 

2. Median (Q2). The line inside the box represents the median (Q2), the 50th 
percentile, which divides the dataset in half. The position of the median 
within the box indicates skewness: a centered median line indicates a 
roughly symmetric distribution; if the median line is closer to Q1, the data 
is right-skewed (positive skew); if the median is closer to Q3, the data is 
left-skewed (negative skew) 

3. Whiskers. The whiskers extend from the edges of the box and capture the 
data within a defined range. The lower whisker extends from Q1 to the 
smallest data point within 1.5 times the IQR below Q1, calculated as:  

𝐿𝑜𝑤𝑒𝑟	𝐵𝑜𝑢𝑛𝑑 = 𝑄1 − 1.5 × 𝐼𝑄𝑅 
The upper whisker extends from Q3 to the largest data point within 1.5 
times the IQR above Q3:  

𝑈𝑝𝑝𝑒𝑟	𝐵𝑜𝑢𝑛𝑑 = 𝑄3 + 1.5 × 𝐼𝑄𝑅	 
4. Outliers, Data points that fall beyond the lower and upper bounds are 

called outliers and are marked as individual points beyond the whiskers. 
Outliers are defined by lower outliers and upper outliers, which are 
computed as in the following formulas, respectively: 

𝐷𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠	𝑥 < 𝑄1 − 1.5 × 𝐼𝑄𝑅 
𝐷𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠	𝑥 > 𝑄3 + 1.5 × 𝐼𝑄𝑅 

 
The height of the box, so the IQR, and the length of the whiskers indicate the 
spread of the data. A larger IQR or longer whiskers indicate more variability. 
The position of the median within the box and the relative lengths of the whiskers 
reveals symmetry or skewness. 
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4 Results and Discussion 
This section provides an in-depth analysis across various metrics, including 
accuracy, computational efficiency, and adaptability to different movement types 
and environments.  

4.1. Bland-Altman analysis 
The main purpose of the Bland-Altman plot is to display the individual 
differences in the step count from each algorithm compared to the reference IMU 
step count over different activities. It helps to assess any systematic biases, 
detects a trend of the magnitude of the errors, and intuitively provides the 
performance regarding each algorithm's reliability for a wide range of different 
activity types. 

4.1.1. Interpretation of Bland-Altman Plot Components 

Each of the following Bland-Altman plots includes: 

• Mean difference (bias). The black dashed line represents the mean 
difference between the algorithm and the reference IMU count. A positive 
mean difference reflects overestimation by the algorithm whereas a 
negative reflects underestimation. 

• Limits of agreement (LoA). The red and green doCed lines represent the 
limits of agreement, computed as the mean difference ± 1.96 times the 
standard deviation (SD) of the differences. The limits of agreement 
provide the range within which 95% of the differences fall. A narrower 
LoA denotes higher agreement, while a wider LoA is indicative of greater 
variability in the error. 

• Distribution of data and variability of activities. Each point in the 
following plot represents the difference in step count in a 30 second 
window, color-coded by activity type, i.e., ‘light task’, ‘complete rest’, 
‘indoor activity’, ‘climbing stairs’, and ‘outdoor walk’. Data points 
concentrated around the mean difference represent stable performance, 
while wide dispersion suggests higher variability. Color-coding is useful 
since it lets us immediately see whether some activities come to introduce 
systematic biases or errors into the algorithm's counting. 

Table 4.1 summarizes the results obtained for each algorithm in terms of mean 
difference, standard deviation, upper LoA, and lower LoA. The total table 
with MAE, median error (MED), LoA values for each activity, subject, 
algorithm are in appendix A1. Moreover, Appendix A2 presents the Mean 
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Percentage Error values calculated over 30-second time windows for each 
activity and algorithm. 

 

Algorithm 
Mean 

Difference 
Standard 
Deviation 

Upper LoA Lower LoA 

Dummy 2,90 15,28 32,85 -27,06 
BangleSimple -10,34 16,36 21,72 -42,40 

Espruino -11,29 18,02 24,04 -46,61 
Oxford 3,12 15,57 33,64 -27,41 

Autocorrelation -11,55 17,93 23,59 -46,69 
FFT -4,80 14,12 22,87 -32,47 

Table 4.1 - Mean difference, standard deviation, upper LoA, lower LoA of each algorithm 

 

Figure 4.1 - Bland- Altman plot for Dummy algorithm 

As shown in Figure 4.1 the Dummy algorithm has a positive bias 2.90 steps, 
suggesting it tends to slightly overestimate the step count compared to the 
reference. The upper and lower LoAs are at +32.85 and -27.06, as shown in Table 
4.1, respectively, indicating a broad range of variability in its estimates. The wide 
LoA indicates high inconsistency in the Dummy algorithm’s step counting 
accuracy. The relatively large range suggests that the Dummy algorithm lacks 
adaptability, particularly in dynamic activity types, such as ‘indoor activity’ and 
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‘outdoor walk’. Its fixed-rate assumption results in errors that vary significantly 
across different activity levels, as it does not account for contextual changes in 
movement. 

 

Figure 4.2 - Bland- Altman plot for BangleSimple algorithm 

The mean difference for Bangle-Simple, shown in Figure 4.2, is + 10.34, indicating 
a tendency toward overestimation relative to the reference. The upper and lower 
LoAs are 21.72 and -42.40, respectively, yielding an asymmetrical range around 
the bias line. The wider lower LoA suggests greater potential for underestimating 
steps in certain conditions, particularly where step paCerns are less regular, such 
as during ‘climbing stairs’ and ‘indoor activity’. The occasional underestimation 
points to limitations in handling non-periodic or abrupt movement paCerns, 
likely due to a simpler approach in detecting step changes without sophisticated 
filtering. 
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Figure 4.3 - Bland- Altman plot for Espruino algorithm 

The mean difference for Espruino, shown in Figure 4.3, is approximately -11.29, 
indicates that the Espruino algorithm generally underestimates step counts 
relative to the reference. The LoAs are wider, at +24.04 and -46.61, reflecting a 
substantial spread in step count accuracy. This wide range suggests variability in 
performance across different activity types. 
The negative bias implies that Espruino might miss steps in certain scenarios, 
particularly in activities with subtle or complex movements (e.g., ‘indoor activity’ 
and ‘climbing stairs’), where detection may be more challenging. The wide LoA 
further suggests that Espruino’s accuracy is inconsistent across varied activities, 
potentially making it less reliable in applications where precise step counting is 
critical across diverse conditions. 
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Figure 4.4 - Bland- Altman plot for Oxford algorithm 

The Oxford algorithm, shown in Figure 4.4, Oxford shows a lower bias at around 
3.12, indicating a relatively balanced performance compared to the reference. The 
LoAs are slightly narrower than those of Espruino, at +33.64 and -27.41, 
suggesting that Oxford has moderate variability, with a performance range like 
the Dummy algorithm but with less overestimation. 
The Oxford algorithm’s near-neutral bias suggests a balanced approach to step 
counting that can perform well across different activities. However, the relatively 
wide LoA reveals some variability in accuracy, especially in activities with 
irregular movement paCerns like ‘indoor activity’ and ‘outdoor walk’. The 
balance in bias may result from its state-machine logic, which can adapt 
reasonably well across different types of movements but still lacks fine-tuning for 
extreme conditions 
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Figure 4.5 - Bland- Altman plot for Autocorrelation algorithm 

As shown in Figure 4.5, the mean difference in the case of the Autocorrelation 
algorithm is -11.55, indicating a negative bias. This means that the 
Autocorrelation algorithm underestimates the number of steps on average 
compared to the reference. This algorithm has one of the broadest ranges for 
LoAs, with an upper LoA at +23.59 and a lower LoA at -46.69, reflecting 
substantial variability in accuracy. The high variability and negative bias imply 
that while the Autocorrelation algorithm may function adequately in specific 
scenarios, it may struggle to provide accurate step counts consistently across 
diverse activity types. The tendency to underestimate steps suggests it may miss 
steps in low-intensity or irregular movement paCerns. 
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Figure 4.6 - Bland- Altman plot for FFT algorithm 

The FFT-based algorithm, represented in Figure 4.6, has a slight negative bias 
around -4.80, indicating a minor tendency to underestimate steps compared to 
the reference. The LoAs are relatively tight, with the upper LoA at +22.87 and the 
lower LoA at -32.47. This relatively narrow range indicates lower variability than 
most other algorithms. 
FFT’s narrow LoAs and slight negative bias indicate that it offers consistent 
performance across activities, with fewer extreme deviations in accuracy. This is 
likely due to its frequency-based approach, which allows it to filter noise and 
recognize periodic movement paCerns effectively. The slight underestimation 
could stem from its reliance on detecting frequency components, which may lead 
to minor missed steps in non-periodic or abrupt movements. Overall, the FFT-
based algorithm’s consistency suggests it may be the most reliable option for 
varied conditions, especially in activities with predictable movement paCerns 
like ‘outdoor walk’. 

4.2. Computational cost of the algorithms 
In addition to evaluating accuracy, a critical aspect of implementing step-
counting algorithms in wearable devices is their computational cost. Devices like 
smartwatches and fitness trackers operate under constrained processing power 
and energy consumption. Therefore, it is essential that step-counting algorithms 
are not only accurate but also efficient in terms of CPU cycles, to reduce baCery 
consumption and enable real-time operation. 
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The computational cost of each step-counting algorithm was measured in CPU 
cycles to understand the processing load each algorithm imposes. The results 
show significant variation in computational requirements among the algorithms.  

To evaluate the computational cost of each algorithm, we calculated the sum of 
CPU cycles required to process all input files. The resulting values are shown in  
Table 4.2: 

Algorithm Sum CPU Cycles 

Dummy 633497 

BangleSimple 612986 

Espruino 512598 

Oxford 
 

6480319 
 

Autocorrelation 648345 

FFT 
 

10169942 
 Table 4.2 - CPU cycles for each algorithm 
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4.3. Box plot analysis 

 
Figure 4.7 - Box plot of each algorithm and of each activity 

 
This box plot, shown in Figure 4.7, illustrates the performance of estimation 
algorithms in terms of total MAE across various activity types: ‘light activity’, 
‘complete rest’, ‘indoor activity’, ‘climbing stairs’, ‘outdoor walk’, and a 
cumulative aggregate (‘all’). The box plot structure allows for an in-depth 
analysis of the error distribution for each algorithm, enabling us to assess not 
only the median and variability of the error but also the presence of outliers, 
which may indicate problematic or extreme cases. 
The results vary between the different activities as follows: 

• ‘Light activity’.  Light activity is characterized by the absence of actual 
steps, with only arm movements being detected as stepsThe algorithms 
exhibit relatively short boxes with centered medians, indicating a 
symmetric error distribution and low variability (i.e., small IQR). The 
consistency in performance across algorithms and the absence of 
significant outliers suggest that low-intensity activity is a stable, 
manageable scenario for all approaches. A reduced IQR implies that the 
model generalizes well in low-activity conditions, where signal variations 
are minimal, keeping the MAE consistently low. For this activity, the 
worst-performing algorithms are the Dummy and Oxford algorithms. 

• ‘Complete rest’. In this category, the boxes are highly compressed, with 
some isolated outliers representing rare error spikes. Low median values 
and consistent distribution indicate that this activity is straightforward 
and lacks significant variations. The ability of the algorithms to maintain 
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low MAE in resting conditions suggests a high level of robustness when 
handling static or minimally varying data. The absence of large variations 
in the input data makes this activity easy to manage for all algorithms, 
confirming their ability to operate with stationary data. 

• ‘Indoor activity’. The indoor activity introduces significant variability in 
errors, as evidenced by the wider IQR and numerous outliers. For the 
treadmill activity, the autocorrelation, Bangle-Simple, and Espruino 
algorithms exhibit higher average MAE values, along with greater 
variability compared to the other algorithms. In contrast, the Oxford and 
dummy algorithms show the best performance in terms of lower MAE and 
stability. The FFT algorithm falls in between, with moderate MAE and 
variability levels 

• ‘Climbing stairs’.  In this category, the error distribution is more uniform 
and contained. The median is centered within the boxes of almost all 
algorithms, and the IQR is not excessively wide, indicating that the 
algorithms maintain a consistent error level. Climbing stairs implies 
constant vertical and repetitive variation in the signal.  

• ‘Outdoor walk’. This activity shows considerable variability in errors. The 
boxes are elongated, and there are outliers, especially for algorithms like 
Bangle-Simple and Autocorrelation, which struggle to maintain 
consistency in outdoor environments where conditions can be dynamic 
and unpredictable. In this activity, it emerges that the FFT algorithm is the 
one with the lowest average MAE values among the various tested 
algorithms, as well as having lower variability, meaning it exhibits less 
dispersion around the central values. 

• ‘All’. When considering the error across all activities together, both the 
IQR and the presence of outliers increase significantly. This indicates 
greater overall variability in algorithm performance, with Bangle-Simple, 
Espruino and Autocorrelation algorithms exhibiting a more compact error 
distribution compared to others. FFT and Dummy, on the other hand, 
show beCer generalizability, managing to keep stable and relatively low 
errors across a wide range of activities, likely due to more robust and 
flexible model architecture. The overall aggregate highlights the difficulty 
some algorithms face in maintaining consistent performance across 
diverse activities. 

4.4. Discussion  
Through examining both results and practical implications, the discussion aims 
to guide the choice of step-counting algorithms best suited for wearable 
applications, especially in cases where resources are constrained, or specific user 
needs are prioritized. 
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4.4.1. Bland-Altman discussion  
In comparing the consistency and variability across algorithms, FFT, Dummy and 
Oxford stand out for their relatively narrow LoAs, indicating a higher level of 
accuracy and stability in step counts across different activities. This consistency 
suggests that the algorithms maintain a reliable performance, even as activity 
types change, with FFT showing particularly robust adaptability. In contrast, 
Autocorrelation and Espruino exhibit wider LoAs, which reflects greater 
variability and suggests less dependable step count accuracy. The higher 
variability in these algorithms implies that their performance may fluctuate more 
widely, making them less reliable in diverse activity seCings. 
Regarding the bias, the Dummy and Oxford algorithms show a mild positive 
tendency, meaning they tend to overestimate step counts slightly compared to 
the reference. Autocorrelation, Espruino and Bangle-simple algorithms, instead, 
show a high negative bias, meaning they tend to underestimate steps. This 
underestimation may result in missed steps, particularly in activities where 
subtle movements or complex paCerns are present. On the other hand, FFT 
algorithm shows a slight negative bias, indicating a balanced approach that is 
less likely to result in significant over or underestimation of steps. Overall, the 
best performing algorithm in this analysis was the FFT algorithm, followed by 
the Oxford and Dummy algorithms. A more detailed analysis of each algorithm's 
performance across different activities is provided in Section 4.4.3 

4.4.2. Computational costs discussion  

 

Figure 4.8 - Computational cost of each algorithm 
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The analysis of computational costs across various step-counting algorithms 
highlights a fundamental trade-off between efficiency and accuracy, a crucial 
consideration for wearable devices where processing power and baCery life are 
limited. The results, shown in Figure 4.8, show that algorithms already integrated 
into the Bangle.js, Espruino and BangleSimple, maintain a high level of efficiency 
with relatively low CPU cycle consumption, establishing them as benchmarks for 
resource-conscious applications.  

In contrast, more complex algorithms, such as Oxford and FFT, offer additional 
accuracy but require considerably higher computational resources. Oxford 
emerges as a middle-ground option, consuming more cycles than Espruino and 
BangleSimple but offering enhanced step-counting accuracy, which may justify 
its use in applications where precision is paramount. The elevated computational 
cost of Oxford and FFT algorithms makes them less practical for continuous use 
in most wearables, although they show potential in specialized contexts where 
accuracy can be prioritized over efficiency. 

4.4.3. Box plot discussion  
In general, the FFT, dummy, and Oxford algorithms show nearly identical 
performance when evaluating their overall effectiveness across the different 
activities. This suggests that these algorithms are relatively consistent in handling 
various types of movement, demonstrating a level of adaptability that makes 
them suitable for general use in step counting. However, when considering their 
performance in specific activities tested through the protocol, noticeable 
differences emerge. 
For less dynamic activities such as rest and light activity, the performance of the 
algorithms tends to be quite similar. In these contexts, the simpler motion 
paCerns result in relatively low variability in the error values, and all the 
algorithms can maintain sufficient accuracy. However, a closer inspection reveals 
that the Dummy and Oxford algorithms show slightly worse results compared 
to the FFT.  
In contrast, when the participant is walking on a treadmill (‘indoor activity’), the 
Oxford and Dummy algorithms demonstrate superior performance. The higher 
accuracy in these specific contexts may be aCributed to the fact that these 
algorithms are beCer suited to environments with more controlled, predictable 
movement paCerns. Indoor activities tend to involve more repetitive motions, 
and these algorithms may be more effective at identifying these regularities, 
resulting in fewer errors compared to more complex outdoor activities.  
On the other hand, the FFT algorithm proves to be the most effective for dynamic 
outdoor activities (‘outdoor walk’). These types of activities, which often involve 
rapid and unpredictable movements, are more challenging for many step-
counting algorithms.  
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In conclusion, while the overall performance of the FFT, Dummy, and Oxford 
algorithms is comparable across a range of activities, the true differences lie in 
their ability to adapt to specific conditions. The Oxford and Dummy algorithms 
excel in indoor seCings, where the movement is more predictable, while the FFT 
algorithm outperforms the others in dynamic, outdoor conditions. These findings 
suggest that choosing the most appropriate algorithm depends heavily on the 
nature of the activity, and that further optimization of these algorithms could 
enhance their performance in more specialized seCings. 

5 Conclusion and Future 
developments 

5.1. Conclusion  
The analysis of the Bland-Altman plots, specifically focusing on the limits of 
agreement and mean differences, reveals that the FFT algorithm outperforms the 
other algorithms in terms of accuracy, followed by the Oxford and Dummy 
algorithms. The FFT algorithm demonstrates the tightest limits of agreement, 
indicating superior consistency and reliability in step counting across various 
activities. This consistency suggests that the FFT algorithm is highly adaptable 
and maintains its accuracy even as the activity type changes.  
When examining the performance of these algorithms across specific activities, it 
becomes clear that the real difference between them lies in how they handle 
different types of movement. The FFT, Espruino, Autocorrelation, and Bangle-
Simple algorithms perform well in low-intensity, less dynamic activities, such as 
‘complete rest’ and ‘light activity’. In these types of activities, the motion is less 
variable, and the algorithms can produce relatively accurate results with liCle 
fluctuation in error values. However, when focusing on specific performance 
nuances, the Dummy and Oxford algorithms perform slightly worse in these 
contexts, potentially due to their inability to handle small, subtle movements 
effectively. The slight overestimations seen in these algorithms may contribute to 
a less precise representation of step counts in low-activity scenarios. 
On the other hand, in more controlled environments such as indoor treadmill 
activities, the Oxford and Dummy algorithms emerge as the best performers, 
showing superior accuracy compared to other algorithms. This can be aCributed 
to the nature of indoor activities, which often involve repetitive and predictable 
movement paCerns. The FFT algorithm, while still performing reasonably well 
indoors, shows less adaptability to the repetitive nature of treadmill walking 
(‘indoor activity’) when compared to Oxford and Dummy. 
In the case of ‘outdoor walk’, however, the FFT algorithm outperforms the others. 
Outdoor activities typically involve more unpredictable and rapid movements, 
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presenting a greater challenge to step counting algorithms. The FFT algorithm, 
with its frequency-based approach that decomposes signals into frequency 
components, is beCer equipped to handle the noise and variability inherent in 
these types of dynamic environments. This makes FFT particularly well-suited to 
real-life outdoor walking, where the movement is more irregular and varied.  
Given these results, the FFT algorithm stands out as the best overall choice for 
step counting across a broad range of scenarios. The choice of FFT is justified by 
its balanced performance across different activity types. Its performance in low-
intensity activities, such as rest and light activity, is critical, as most of the 
population tends to lead a sedentary lifestyle. In fact, statistics show that 
approximately 60-85% of adults globally do not meet the recommended levels of 
physical activity (WHO, 2020), with a significant portion engaging in sedentary 
behaviors for prolonged periods. In these scenarios, it is more crucial for an 
algorithm to minimize false positives, incorrectly detecting steps, rather than 
false negatives, where steps might be missed.  
Moreover, because many individuals lead sedentary lives, the algorithm must be 
robust enough to handle noise, especially in low-intensity activities. In such 
contexts, the signal can be prone to small, irrelevant fluctuations, and a less 
robust algorithm might mistakenly interpret these as movement. Therefore, it is 
crucial that the algorithm remains accurate even when the activity is minimal, 
ensuring that noise does not compromise the signal. This is why the FFT 
algorithm's ability to effectively manage noise in low-intensity activities is 
particularly valuable, offering a more reliable and consistent performance across 
various activity levels. 
While the FFT algorithm performs exceptionally well in many contexts, it does 
come with the drawback of high computational costs. This is a significant 
limitation for real-time applications, especially in wearable devices such as 
smartwatches where baCery life and processing power are constrained. 
Therefore, a key area for future research will be optimizing the FFT algorithm to 
reduce its computational load. Possible improvements could include refining the 
frequency-domain processing or exploring alternative methods for real-time 
processing that can maintain the algorithm’s accuracy while making it more 
efficient.  

In conclusion, while the FFT algorithm stands out for its accuracy, stability, and 
adaptability across various activities, the high computational cost remains a 
challenge that needs to be addressed. Nonetheless, its overall performance, 
particularly in dynamic, outdoor activities, justifies its selection as the best 
algorithm among those tested. With further optimization, FFT could become a 
viable and reliable choice for continuous, real-time activity tracking in wearable 
devices, making it a strong candidate for future developments in health and 
fitness monitoring technologies. 
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5.2. Future Development 
Given the depth of analysis undertaken herein, a number of potential future 
directions now appear that could help further extend and deepen the insights 
developed in this study. First, using the comparative analysis done with step-
counting algorithms, a new, optimized algorithm is to be developed specifically 
with integration into Bangle.js in mind. The best algorithm would balance 
computational efficiency with accuracy, taking the best elements of different 
current methods. Given this very encouraging performance of the FFT approach, 
it might form one very firm basis for further refinement into a robust step-
counting method that can handle a wide range of real-world activities while 
keeping processing demands low.  

Another possible future direction could be the expansion of the comparison 
scope to include heart rate measurement algorithms in addition to step-counting, 
since heart rate is another important vital metric for physical activity and health 
monitoring. This would therefore include the methodological comparison of 
heart rate algorithms in an effort to determine which algorithms perform best for 
wearable applications, much like the step-counting methods compared in this 
study. This would take such imbedded heart rate tracking in the Bangle.js to more 
reliable heights, hence a comprehensive health monitoring device.  

Future work could also be directed to the collection of larger datasets, mainly 
recording for a longer duration and the number of activities. Activities involving 
running introduce other movement dynamics, which may provide new insights 
into algorithm performance during higher intensities. The extension of the 
dataset would allow for a more in-depth study of the robustness of the 
algorithms and therefore would enable the tuning and validation of algorithms 
for real-world applications. 

Future designs may incorporate adaptive algorithms that learn with time from 
the peculiar paCerns of single individuals. This will allow much finer-tuned 
algorithm accuracy, especially for users having non-standard walking paCerns 
due to factors like age or mobility assistance devices. Adaptive algorithms can 
also make the Bangle.js much more resistant to awkward moves and 
interruptions, thereby raising the level of accuracy during unconstrained, day-
to-day usage. 

The wearable could adopt a platform of cloud computing for periodic updates or 
improvements in its algorithm library. By doing so, this device provides periodic 
optimization of its algorithms, either through new data or through user feedback, 
to maintain the accuracy of step-count and heart rate when activity paCerns 
change or new movement types are encountered. 
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These are some of the lines of development that might be explored in the future 
and could make the Bangle.js a more useful, accurate, and adaptable health-
monitoring device, thus positioning it effectively as a real-time solution for users 
with diversified needs and levels of activity. 
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6 Appendix A 
This Appendix contains additional material referred to the Materials and 
Methods section. 
 

6.1. A.1 Metrics Calculation 
 
 

Subject Activity type Dummy_mae Dummy_med Dummy_loa Banglesimple_mae Banglesimple_med Banglesimple_loa 
S01 Light activity 3.91 ± 3.08 4.00 ± 1.25 -2.13, 9.95 2.09 ± 1.81 2.00 ± 1.00 -1.46, 5.65 
S01 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S01 Indoor activity 15.67 ± 18.59 4.00 ± 3.75 -50.07, 46.07 21.72 ± 13.26 -18.00 ± 7.50 -52.77, 15.10 
S01 Climbing stairs 4.50 ± 5.26 1.00 ± 2.75 -10.84, 15.84 7.75 ± 7.76 -2.00 ± 4.88 -25.27, 18.77 
S01 Outdoor walk 13.78 ± 11.26 8.00 ± 8.00 -16.69, 38.61 9.93 ± 8.99 -2.00 ± 5.25 -27.72, 25.06 
S02 Light activity 1.36 ± 2.46 0.00 ± 0.75 -3.46, 6.19 0.73 ± 1.42 0.00 ± 0.25 -2.06, 3.51 
S02 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S02 Indoor activity 13.11 ± 15.80 2.00 ± 3.75 -44.04, 35.59 27.56 ± 16.50 -33.00 ± 14.50 -59.90, 4.79 
S02 Climbing stairs 7.50 ± 9.00 1.00 ± 4.25 -19.66, 26.66 16.50 ± 17.94 -13.00 ± 14.75 -53.44, 23.44 
S02 Outdoor walk 10.70 ± 9.27 7.00 ± 1.88 -14.97, 31.03 21.77 ± 11.93 -25.50 ± 10.50 -46.17, 3.43 
S03 Light activity 5.73 ± 8.05 3.00 ± 2.00 -10.05, 21.51 2.73 ± 5.24 1.00 ± 1.25 -7.54, 12.99 
S03 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S03 Indoor activity 12.89 ± 18.51 -2.00 ± 3.25 -49.81, 30.26 32.72 ± 12.24 -32.50 ± 5.50 -56.72, -8.73 
S03 Climbing stairs 2.25 ± 3.86 0.00 ± 1.12 -6.47, 9.97 10.00 ± 8.98 -10.50 ± 6.50 -27.60, 7.60 
S03 Outdoor walk 7.45 ± 6.88 2.50 ± 3.62 -14.39, 22.49 12.40 ± 7.58 -9.50 ± 6.62 -31.96, 14.96 
S04 Light activity 6.82 ± 4.31 7.00 ± 3.00 -1.63, 15.26 3.36 ± 2.06 4.00 ± 0.75 -0.68, 7.41 
S04 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S04 Indoor activity 11.33 ± 14.04 2.50 ± 2.75 -38.85, 30.85 24.72 ± 11.69 -22.00 ± 5.00 -47.63, -1.82 
S04 Climbing stairs 5.80 ± 6.72 3.00 ± 6.00 -7.38, 18.98 3.60 ± 6.99 0.00 ± 0.00 -17.36, 11.76 

S04 Outdoor walk 14.84 ± 9.14 12.00 ± 4.75 -4.16, 33.32 8.48 ± 7.33 -1.00 ± 6.00 -23.05, 21.18 

S05 Light activity 13.45 ± 10.46 15.00 ± 6.75 -7.05, 33.96 7.09 ± 6.41 6.00 ± 3.75 -5.47, 19.65 

S05 Complete rest 1.43 ± 1.81 0.00 ± 1.50 -2.12, 4.98 0.43 ± 0.79 0.00 ± 0.25 -1.11, 1.97 

S05 Indoor activity 12.83 ± 17.94 1.00 ± 3.25 -48.27, 34.60 21.33 ± 14.15 -20.00 ± 6.38 -49.07, 6.40 

S05 Climbing stairs 10.50 ± 19.69 1.00 ± 5.75 -28.09, 49.09 13.25 ± 14.55 -4.50 ± 8.88 -36.75, 44.25 

S05 Outdoor walk 12.90 ± 11.90 6.00 ± 4.00 -19.03, 38.52 10.97 ± 9.37 -5.00 ± 3.50 -29.98, 26.75 

S06 Light activity 1.80 ± 2.94 0.00 ± 1.38 -3.96, 7.56 1.00 ± 1.33 0.00 ± 1.00 -1.61, 3.61 

S06 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S06 Indoor activity 14.72 ± 16.02 2.00 ± 13.25 -47.71, 34.49 20.17 ± 14.59 -15.50 ± 11.00 -48.75, 8.42 

S06 Climbing stairs 9.00 ± 9.31 -1.00 ± 5.00 -27.35, 27.35 14.00 ± 12.54 -8.00 ± 11.00 -43.55, 25.55 

S07 Light activity 1.64 ± 3.04 0.00 ± 0.50 -4.70, 7.61 0.73 ± 1.56 0.00 ± 0.00 -2.66, 3.75 

S07 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S07 Indoor activity 15.11 ± 13.06 8.00 ± 4.12 -38.63, 40.85 11.50 ± 14.29 -6.50 ± 2.50 -39.84, 17.95 
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S07 Climbing stairs 14.50 ± 18.23 3.00 ± 8.75 -35.03, 53.03 14.25 ± 12.61 -4.00 ± 9.12 -40.87, 40.37 

S07 Outdoor walk 15.17 ± 9.93 14.00 ± 3.62 -10.34, 37.34 7.17 ± 8.20 0.00 ± 4.25 -19.63, 22.90 

S08 Light activity 8.36 ± 7.12 10.00 ± 5.75 -7.41, 23.05 5.27 ± 4.54 6.00 ± 3.00 -6.90, 15.26 

S08 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S08 Indoor activity 13.67 ± 16.78 2.00 ± 7.25 -46.93, 36.04 18.61 ± 14.94 -15.50 ± 7.12 -48.87, 12.98 

S08 Climbing stairs 5.00 ± 5.77 0.00 ± 2.50 -16.00, 16.00 9.25 ± 11.00 -2.00 ± 5.62 -32.85, 22.35 

S08 Outdoor walk 9.00 ± 6.86 6.00 ± 4.00 -8.20, 23.91 17.86 ± 9.55 -19.50 ± 7.38 -37.52, 2.52 

S09 Light activity 0.30 ± 0.95 0.00 ± 0.00 -1.56, 2.16 0.10 ± 0.32 0.00 ± 0.00 -0.52, 0.72 

S09 Complete rest 0.17 ± 0.41 0.00 ± 0.00 -0.63, 0.97 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S09 Indoor activity 12.78 ± 14.49 2.00 ± 4.00 -40.80, 35.02 16.39 ± 14.00 -13.00 ± 7.38 -43.83, 11.05 

S09 Climbing stairs 8.75 ± 7.18 3.00 ± 5.88 -23.49, 24.99 8.75 ± 11.56 -4.50 ± 6.62 -31.84, 15.34 

S09 Outdoor walk 10.67 ± 7.46 8.00 ± 2.38 -9.15, 27.42 14.40 ± 8.31 -16.00 ± 7.25 -33.12, 6.72 

S10 Light activity 6.00 ± 8.49 1.00 ± 6.25 -10.63, 22.63 3.20 ± 4.44 0.50 ± 3.00 -5.51, 11.91 

S10 Complete rest 0.43 ± 1.13 0.00 ± 0.00 -1.79, 2.65 0.29 ± 0.76 0.00 ± 0.00 -1.20, 1.77 

S10 Indoor activity 14.11 ± 17.34 3.00 ± 7.12 -49.06, 34.84 19.83 ± 15.42 -15.00 ± 7.00 -50.07, 10.40 

S10 Climbing stairs 9.50 ± 11.47 6.00 ± 4.75 -12.99, 31.99 7.50 ± 10.15 -0.50 ± 4.00 -21.42, 28.42 

S10 Outdoor walk 16.28 ± 13.17 6.00 ± 9.50 -28.59, 46.38 16.41 ± 11.75 -13.00 ± 12.00 -44.74, 25.15 

S11 Light activity 4.10 ± 4.93 1.50 ± 3.88 -5.57, 13.77 2.00 ± 2.98 0.50 ± 1.38 -3.84, 7.84 

S11 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S11 Indoor activity 14.44 ± 15.27 6.00 ± 3.50 -43.49, 39.71 17.72 ± 14.43 -14.00 ± 5.50 -46.01, 10.57 

S11 Climbing stairs 0.00 ± nan 0.00 ± 0.00 nan, nan 0.00 ± nan 0.00 ± 0.00 nan, nan 

S11 Outdoor walk 14.32 ± 9.73 10.00 ± 7.25 -22.05, 38.50 22.05 ± 12.79 -22.50 ± 8.25 -47.11, 3.02 

S12 Light activity 0.90 ± 2.02 0.00 ± 0.00 -3.07, 4.87 0.30 ± 0.67 0.00 ± 0.00 -1.02, 1.62 

S12 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S12 Indoor activity 13.06 ± 17.37 -1.50 ± 8.50 -47.76, 24.76 22.00 ± 14.36 -19.50 ± 5.75 -50.14, 6.14 

S12 Climbing stairs 15.25 ± 18.93 0.00 ± 7.62 -45.50, 54.00 19.25 ± 17.08 -5.00 ± 12.12 -56.12, 53.62 

S13 Light activity 5.55 ± 4.18 4.00 ± 3.00 -4.56, 14.56 2.55 ± 2.58 2.00 ± 1.25 -4.43, 8.07 

S13 Complete rest 0.29 ± 0.76 0.00 ± 0.00 -1.20, 1.77 0.29 ± 0.76 0.00 ± 0.00 -1.20, 1.77 

S13 Indoor activity 12.78 ± 16.52 2.00 ± 2.75 -45.35, 34.46 25.56 ± 16.54 -27.50 ± 15.00 -57.97, 6.85 

S13 Climbing stairs 16.40 ± 15.73 6.00 ± 11.50 -29.29, 51.69 15.40 ± 13.52 0.00 ± 9.00 -42.29, 43.49 

S13 Outdoor walk 16.77 ± 17.72 4.00 ± 6.88 -34.60, 53.96 28.95 ± 15.25 -28.00 ± 15.00 -67.17, 17.62 

S14 Light activity 3.50 ± 4.14 2.00 ± 3.12 -4.62, 11.62 1.70 ± 1.89 1.00 ± 1.50 -2.00, 5.40 

S14 Complete rest 15.00 ± 14.00 -14.00 ± 8.50 -42.44, 12.44 15.00 ± 14.00 -14.00 ± 8.50 -42.44, 12.44 

S14 Climbing stairs 9.50 ± 8.06 10.00 ± 5.25 -6.30, 25.30 6.25 ± 4.86 2.50 ± 4.38 -16.21, 17.71 

S14 Outdoor walk 16.87 ± 12.46 7.00 ± 10.25 -31.24, 46.27 14.74 ± 11.87 -4.00 ± 10.25 -41.92, 24.44 

S15 Light activity 3.60 ± 4.06 0.00 ± 3.12 -8.78, 11.98 2.50 ± 2.22 0.00 ± 2.00 -6.18, 7.18 

S15 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S15 Indoor activity 13.44 ± 14.86 -7.00 ± 8.38 -44.28, 24.06 18.78 ± 13.64 -15.50 ± 7.75 -45.50, 7.95 

S15 Climbing stairs 5.50 ± 5.26 1.00 ± 3.25 -15.62, 16.62 9.75 ± 10.72 -3.00 ± 6.38 -33.30, 21.80 

S16 Light activity 11.09 ± 9.80 12.00 ± 6.75 -8.12, 30.30 5.45 ± 5.09 5.00 ± 3.25 -4.52, 15.42 

S16 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S16 Indoor activity 12.78 ± 19.17 -1.50 ± 3.50 -50.85, 31.73 34.33 ± 13.15 -36.00 ± 6.00 -60.10, -8.57 
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S16 Climbing stairs 3.50 ± 5.07 -0.50 ± 2.00 -9.87, 13.87 6.00 ± 4.24 -3.00 ± 4.50 -17.06, 14.06 

S16 Outdoor walk 12.87 ± 12.65 2.00 ± 8.38 -33.04, 37.70 21.20 ± 13.94 -21.50 ± 13.00 -52.13, 14.13 

S17 Light activity 0.80 ± 1.69 0.00 ± 0.00 -4.11, 2.51 1.20 ± 2.70 0.00 ± 0.00 -6.49, 4.09 

S17 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S17 Indoor activity 7.67 ± 10.79 1.00 ± 3.00 -28.93, 20.93 30.22 ± 12.36 -30.00 ± 8.50 -54.45, -6.00 

S17 Climbing stairs 10.25 ± 12.84 6.00 ± 4.38 -14.92, 35.42 10.25 ± 6.95 -6.00 ± 8.12 -28.92, 23.42 

S17 Outdoor walk 11.33 ± 5.84 10.00 ± 2.25 -3.36, 24.56 20.37 ± 10.37 -24.00 ± 6.75 -40.69, -0.04 

S18 Light activity 2.33 ± 4.64 0.00 ± 1.50 -6.75, 11.42 1.11 ± 2.32 0.00 ± 0.50 -3.43, 5.65 

S18 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S18 Indoor activity 12.11 ± 16.64 1.50 ± 3.75 -45.30, 30.63 16.78 ± 15.26 -11.00 ± 4.88 -47.94, 16.60 

S18 Climbing stairs 3.40 ± 4.56 0.00 ± 1.00 -10.43, 12.43 6.60 ± 8.23 0.00 ± 7.00 -23.35, 11.75 

S18 Outdoor walk 9.86 ± 4.86 9.00 ± 2.50 0.34, 19.39 2.93 ± 2.99 1.00 ± 2.50 -5.87, 9.25 

S19 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S19 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S19 Indoor activity 14.50 ± 14.03 6.00 ± 4.25 -41.90, 38.01 13.83 ± 14.91 -8.50 ± 1.88 -43.05, 15.39 

S19 Climbing stairs 11.25 ± 9.22 12.00 ± 5.62 -6.81, 29.31 6.75 ± 8.73 3.50 ± 5.12 -11.81, 24.31 

S19 Outdoor walk 11.68 ± 6.85 10.00 ± 6.00 -12.42, 29.48 7.42 ± 5.98 0.00 ± 5.25 -18.93, 19.04 

S20 Light activity 3.56 ± 7.88 0.00 ± 1.50 -11.88, 18.99 2.33 ± 5.29 0.00 ± 0.50 -8.04, 12.70 

S20 Complete rest 0.00 ± nan 0.00 ± 0.00 nan, nan 0.00 ± nan 0.00 ± 0.00 nan, nan 

S20 Indoor activity 11.39 ± 16.17 1.00 ± 3.00 -43.38, 30.38 31.72 ± 18.46 -40.00 ± 16.38 -67.90, 4.45 

S20 Climbing stairs 0.00 ± nan 0.00 ± 0.00 nan, nan 0.00 ± nan 0.00 ± 0.00 nan, nan 

S20 Outdoor walk 11.33 ± 6.39 9.00 ± 3.50 -8.14, 27.11 26.93 ± 14.13 -28.00 ± 10.00 -55.64, 2.53 
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Subject Activity type Espruino_mae Espruino_med Espruino_loa Oxford_mae Oxford_med Oxford_loa 
S01 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 3.64 ± 3.38 3.00 ± 1.50 -3.00, 10.27 
S01 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S01 Indoor activity 30.33 ± 14.44 -26.50 ± 12.38 -68.02, 15.58 17.22 ± 18.27 3.50 ± 5.75 -51.05, 48.60 
S01 Climbing stairs 8.25 ± 7.50 -3.00 ± 5.62 -25.95, 18.45 4.00 ± 5.48 1.50 ± 2.75 -8.10, 15.10 
S01 Outdoor walk 10.00 ± 9.97 0.00 ± 7.25 -26.83, 28.90 13.33 ± 10.41 8.00 ± 9.25 -14.04, 36.27 
S02 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 1.45 ± 2.58 0.00 ± 1.00 -3.61, 6.52 
S02 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S02 Indoor activity 25.94 ± 13.88 -20.00 ± 10.00 -53.15, 1.26 14.61 ± 15.50 3.50 ± 7.50 -45.45, 37.78 
S02 Climbing stairs 17.50 ± 16.13 -10.50 ± 14.00 -54.79, 30.79 7.50 ± 10.15 -0.50 ± 4.00 -21.42, 28.42 
S02 Outdoor walk 15.93 ± 10.08 -14.00 ± 5.25 -39.45, 12.38 12.07 ± 9.41 8.00 ± 3.38 -14.59, 33.26 
S03 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 5.73 ± 7.24 3.00 ± 2.50 -8.46, 19.92 
S03 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S03 Indoor activity 41.61 ± 15.82 -49.50 ± 5.25 -72.62, -10.61 12.78 ± 18.75 -2.00 ± 3.50 -50.09, 30.98 
S03 Climbing stairs 10.50 ± 8.81 -10.50 ± 4.50 -27.77, 6.77 3.50 ± 4.04 0.50 ± 2.00 -11.97, 9.97 
S03 Outdoor walk 12.70 ± 8.52 -10.50 ± 9.38 -33.51, 15.31 7.25 ± 6.34 3.50 ± 4.12 -14.41, 21.31 
S04 Light activity 0.09 ± 0.30 0.00 ± 0.00 -0.50, 0.68 7.45 ± 4.52 9.00 ± 2.50 -1.41, 16.32 
S04 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S04 Indoor activity 22.83 ± 14.72 -18.50 ± 7.25 -51.68, 6.01 9.61 ± 14.40 -1.00 ± 3.50 -38.13, 25.13 
S04 Climbing stairs 2.60 ± 3.78 -1.00 ± 1.50 -10.01, 4.81 5.20 ± 4.97 3.00 ± 4.00 -4.54, 14.94 

S04 Outdoor walk 6.68 ± 6.60 0.00 ± 3.50 -18.13, 18.96 12.74 ± 9.74 12.00 ± 5.75 -6.58, 31.93 

S05 Light activity 1.18 ± 2.64 0.00 ± 0.00 -3.99, 6.35 14.82 ± 12.06 15.00 ± 7.25 -8.83, 38.47 

S05 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.57 ± 0.98 0.00 ± 0.50 -1.34, 2.48 

S05 Indoor activity 39.39 ± 16.09 -44.00 ± 9.12 -73.06, -4.61 14.11 ± 17.61 1.00 ± 4.50 -48.97, 37.42 

S05 Climbing stairs 12.25 ± 15.06 -2.50 ± 7.38 -34.30, 43.80 10.75 ± 19.52 1.50 ± 5.38 -27.50, 49.00 

S05 Outdoor walk 12.23 ± 10.44 -5.00 ± 5.00 -34.54, 27.51 13.48 ± 11.71 8.00 ± 5.25 -18.57, 39.08 

S06 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 1.50 ± 3.10 0.00 ± 0.88 -4.58, 7.58 

S06 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S06 Indoor activity 22.56 ± 15.25 -20.00 ± 13.00 -53.53, 9.53 14.61 ± 16.95 2.00 ± 13.50 -49.29, 34.07 

S06 Climbing stairs 12.50 ± 13.28 -6.00 ± 9.25 -41.60, 23.60 11.50 ± 10.41 -3.00 ± 7.25 -33.07, 33.07 

S07 Light activity 0.18 ± 0.60 0.00 ± 0.00 -1.36, 1.00 1.55 ± 2.91 0.00 ± 0.50 -4.53, 7.26 

S07 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S07 Indoor activity 26.61 ± 18.66 -31.50 ± 17.62 -63.62, 10.84 16.72 ± 12.89 10.50 ± 6.25 -39.74, 44.08 

S07 Climbing stairs 17.00 ± 14.00 -6.00 ± 11.50 -48.20, 46.20 14.25 ± 17.21 3.00 ± 8.62 -34.52, 51.02 

S07 Outdoor walk 6.70 ± 7.40 -0.50 ± 3.88 -19.75, 19.68 14.97 ± 10.03 13.50 ± 4.38 -10.87, 37.34 

S08 Light activity 1.27 ± 3.13 0.00 ± 0.00 -7.41, 4.87 8.82 ± 7.93 10.00 ± 5.50 -7.93, 24.84 

S08 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S08 Indoor activity 30.17 ± 15.71 -29.50 ± 14.00 -66.33, 10.44 15.61 ± 16.13 3.00 ± 11.25 -48.37, 38.71 

S08 Climbing stairs 10.00 ± 10.80 -2.50 ± 6.25 -33.85, 23.85 5.50 ± 6.14 0.50 ± 3.00 -15.47, 18.47 

S08 Outdoor walk 12.89 ± 7.43 -11.00 ± 5.75 -29.27, 5.20 9.11 ± 7.28 7.50 ± 6.12 -7.74, 24.39 

S09 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S09 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S09 Indoor activity 24.61 ± 16.51 -19.50 ± 13.88 -57.42, 8.64 12.33 ± 14.81 2.00 ± 4.00 -41.17, 33.84 

S09 Climbing stairs 9.00 ± 11.05 -5.50 ± 4.25 -30.65, 12.65 9.75 ± 7.68 4.00 ± 6.88 -22.42, 28.92 

S09 Outdoor walk 8.00 ± 7.32 -3.00 ± 4.12 -23.76, 16.96 9.53 ± 8.10 7.50 ± 4.88 -10.76, 26.89 

S10 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 6.70 ± 9.99 1.50 ± 6.38 -12.88, 26.28 

S10 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S10 Indoor activity 19.67 ± 15.71 -12.50 ± 8.38 -50.47, 11.13 14.56 ± 17.12 3.50 ± 7.00 -49.13, 36.02 

S10 Climbing stairs 7.25 ± 11.24 1.00 ± 4.12 -18.43, 29.93 9.25 ± 12.84 4.50 ± 5.38 -15.92, 34.42 
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S10 Outdoor walk 15.31 ± 11.77 -5.00 ± 13.50 -41.01, 34.39 15.59 ± 13.08 6.00 ± 13.00 -28.49, 45.04 

S11 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 4.30 ± 5.12 2.00 ± 4.50 -5.74, 14.34 

S11 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S11 Indoor activity 21.56 ± 16.59 -15.00 ± 11.88 -55.28, 13.73 14.50 ± 15.46 4.50 ± 5.38 -43.69, 40.24 

S11 Climbing stairs 0.00 ± nan 0.00 ± 0.00 nan, nan 0.00 ± nan 0.00 ± 0.00 nan, nan 

S11 Outdoor walk 12.00 ± 9.94 -10.50 ± 6.25 -33.46, 13.10 12.82 ± 10.29 8.00 ± 6.50 -22.51, 36.51 

S12 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.40 ± 1.26 0.00 ± 0.00 -2.08, 2.88 

S12 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S12 Indoor activity 37.78 ± 15.97 -44.50 ± 11.62 -69.07, -6.49 13.28 ± 17.85 -1.00 ± 8.25 -49.07, 27.18 

S12 Climbing stairs 18.50 ± 14.98 -6.50 ± 12.50 -52.93, 48.93 14.00 ± 17.42 0.50 ± 7.25 -40.18, 50.18 

S13 Light activity 2.18 ± 3.28 0.00 ± 1.00 -8.60, 6.42 6.09 ± 4.70 5.00 ± 3.25 -4.42, 15.88 

S13 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S13 Indoor activity 21.72 ± 13.64 -19.00 ± 5.38 -48.46, 5.02 15.33 ± 16.03 6.50 ± 4.12 -47.27, 39.50 

S13 Climbing stairs 14.20 ± 13.39 0.00 ± 7.50 -37.70, 42.90 18.60 ± 15.53 10.00 ± 12.50 -32.01, 55.61 

S13 Outdoor walk 22.86 ± 13.52 -17.00 ± 11.25 -59.12, 33.40 18.23 ± 18.53 7.00 ± 8.50 -32.72, 57.53 

S14 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 3.60 ± 4.58 1.50 ± 3.12 -5.37, 12.57 

S14 Complete rest 15.00 ± 14.00 -14.00 ± 8.50 -42.44, 12.44 15.00 ± 14.00 -14.00 ± 8.50 -42.44, 12.44 

S14 Climbing stairs 3.75 ± 4.79 0.00 ± 1.88 -13.58, 11.08 8.75 ± 9.07 7.50 ± 5.88 -9.03, 26.53 

S14 Outdoor walk 18.71 ± 12.95 -17.00 ± 11.25 -47.13, 13.71 17.97 ± 12.66 10.00 ± 10.75 -30.94, 48.68 

S15 Light activity 1.00 ± 1.70 0.00 ± 0.75 -4.33, 2.33 3.10 ± 4.61 0.00 ± 1.12 -9.73, 11.93 

S15 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S15 Indoor activity 36.94 ± 14.06 -43.00 ± 8.00 -64.51, -9.38 11.89 ± 15.68 -1.00 ± 6.12 -43.50, 26.17 

S15 Climbing stairs 8.50 ± 13.18 0.50 ± 4.50 -35.20, 24.20 6.50 ± 6.95 0.50 ± 3.50 -20.05, 20.05 

S16 Light activity 0.27 ± 0.90 0.00 ± 0.00 -1.50, 2.05 11.82 ± 9.92 14.00 ± 7.00 -7.62, 31.26 

S16 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S16 Indoor activity 45.61 ± 17.49 -51.00 ± 3.62 -81.30, -9.25 13.67 ± 19.46 1.00 ± 4.25 -52.31, 35.42 

S16 Climbing stairs 11.25 ± 7.80 -6.50 ± 8.88 -32.35, 23.85 3.75 ± 4.99 1.50 ± 2.62 -7.41, 13.91 

S16 Outdoor walk 21.40 ± 12.97 -18.00 ± 11.00 -52.34, 16.34 13.97 ± 12.04 3.50 ± 9.62 -32.78, 39.11 

S17 Light activity 1.40 ± 3.27 0.00 ± 0.00 -7.81, 5.01 1.40 ± 3.27 0.00 ± 0.00 -7.81, 5.01 

S17 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S17 Indoor activity 37.33 ± 13.06 -37.00 ± 8.12 -62.92, -11.74 9.11 ± 10.91 2.00 ± 3.75 -29.98, 25.75 

S17 Climbing stairs 9.75 ± 7.14 -5.00 ± 7.38 -27.22, 24.72 9.75 ± 11.76 7.00 ± 7.62 -13.30, 32.80 

S17 Outdoor walk 20.00 ± 10.48 -23.00 ± 6.75 -41.11, 1.51 13.93 ± 7.19 13.50 ± 3.88 -2.62, 29.42 

S18 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 2.44 ± 5.27 0.00 ± 1.00 -7.89, 12.77 

S18 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S18 Indoor activity 24.44 ± 17.58 -24.00 ± 17.25 -61.45, 15.68 13.17 ± 16.99 -1.00 ± 5.00 -47.39, 31.72 

S18 Climbing stairs 7.60 ± 10.78 0.00 ± 7.50 -28.74, 13.54 3.60 ± 4.62 0.00 ± 0.50 -11.57, 12.37 

S18 Outdoor walk 2.86 ± 2.94 2.00 ± 2.00 -4.02, 8.92 8.38 ± 5.94 8.00 ± 3.00 -3.26, 20.02 

S19 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S19 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S19 Indoor activity 20.56 ± 16.97 -15.00 ± 16.00 -53.83, 12.72 13.56 ± 14.86 3.00 ± 4.50 -42.41, 36.63 

S19 Climbing stairs 6.25 ± 6.13 4.00 ± 5.12 -10.38, 19.88 10.25 ± 8.66 10.50 ± 5.12 -6.71, 27.21 
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S19 Outdoor walk 6.47 ± 6.41 1.00 ± 3.25 -16.99, 18.99 10.11 ± 6.17 6.00 ± 5.25 -13.16, 26.22 

S20 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 3.78 ± 8.53 0.00 ± 1.50 -12.93, 20.49 

S20 Complete rest 0.00 ± nan 0.00 ± 0.00 nan, nan 0.00 ± nan 0.00 ± 0.00 nan, nan 

S20 Indoor activity 36.17 ± 12.39 -38.00 ± 7.38 -60.45, -11.88 14.22 ± 15.16 5.00 ± 3.75 -44.37, 36.81 

S20 Climbing stairs 0.00 ± nan 0.00 ± 0.00 nan, nan 0.00 ± nan 0.00 ± 0.00 nan, nan 

S20 Outdoor walk 8.81 ± 7.46 -6.00 ± 4.25 -25.02, 10.65 13.26 ± 6.63 12.00 ± 3.75 -7.58, 30.24 
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Subject Activity type Autocorrelation_mae Autocorretion_med Autocorretion_loa fft_mae fft_med fft_loa 
S01 Light activity 0.73 ± 2.41 0.00 ± 0.00 -4.00, 5.45 2.36 ± 2.29 2.00 ± 1.00 -2.13, 6.86 
S01 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S01 Indoor activity 23.44 ± 14.95 -20.00 ± 14.12 -58.05, 17.61 16.61 ± 16.13 -9.50 ± 2.12 -51.18, 27.07 
S01 Climbing stairs 6.50 ± 6.03 -1.50 ± 4.00 -18.87, 18.87 9.00 ± 7.07 -4.00 ± 6.50 -26.83, 19.83 
S01 Outdoor walk 11.19 ± 9.44 0.00 ± 7.00 -29.15, 28.86 9.33 ± 8.94 -2.00 ± 5.50 -24.80, 26.28 
S02 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.73 ± 1.27 0.00 ± 0.50 -1.77, 3.22 
S02 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S02 Indoor activity 26.61 ± 17.66 -30.50 ± 17.12 -61.22, 8.00 15.11 ± 15.68 -11.50 ± 6.50 -45.84, 15.62 
S02 Climbing stairs 14.00 ± 12.73 -8.50 ± 11.25 -43.62, 24.62 10.25 ± 7.23 -6.00 ± 8.12 -29.67, 21.17 
S02 Outdoor walk 28.90 ± 15.49 -31.50 ± 13.12 -60.67, 3.94 8.77 ± 7.29 -5.00 ± 3.75 -24.78, 18.72 
S03 Light activity 0.73 ± 2.41 0.00 ± 0.00 -4.00, 5.45 3.09 ± 4.95 1.00 ± 2.00 -6.61, 12.79 
S03 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S03 Indoor activity 32.17 ± 18.70 -33.50 ± 15.12 -68.82, 4.49 21.67 ± 15.35 -19.00 ± 6.12 -52.56, 10.12 
S03 Climbing stairs 8.50 ± 7.33 -6.50 ± 7.50 -25.80, 13.80 5.25 ± 4.27 -5.50 ± 2.38 -13.62, 3.12 
S03 Outdoor walk 13.75 ± 9.91 -8.00 ± 5.25 -37.67, 24.57 9.05 ± 5.39 -6.50 ± 5.88 -23.50, 14.40 
S04 Light activity 1.09 ± 2.59 0.00 ± 0.00 -3.98, 6.16 4.82 ± 3.37 5.00 ± 2.00 -1.79, 11.43 
S04 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 
S04 Indoor activity 23.61 ± 17.78 -22.00 ± 15.50 -59.02, 12.47 15.22 ± 14.28 -9.50 ± 6.25 -43.20, 12.76 
S04 Climbing stairs 2.40 ± 3.05 -1.00 ± 2.00 -8.38, 3.58 3.20 ± 3.56 0.00 ± 1.50 -10.54, 8.94 

S04 Outdoor walk 11.13 ± 9.42 1.00 ± 6.75 -27.63, 29.89 7.26 ± 7.06 1.00 ± 5.00 -14.77, 22.32 

S05 Light activity 3.45 ± 5.43 0.00 ± 3.00 -7.19, 14.10 9.64 ± 7.31 8.00 ± 5.00 -4.69, 23.97 

S05 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.86 ± 1.21 0.00 ± 0.75 -1.52, 3.24 

S05 Indoor activity 21.83 ± 15.19 -17.00 ± 11.25 -51.61, 7.95 19.33 ± 14.41 -15.50 ± 4.75 -50.56, 16.11 

S05 Climbing stairs 16.50 ± 11.12 -11.00 ± 13.75 -47.16, 34.16 13.25 ± 15.13 -4.00 ± 8.62 -36.81, 45.31 

S05 Outdoor walk 17.35 ± 11.76 -8.00 ± 10.25 -46.49, 28.55 10.84 ± 10.04 -4.00 ± 7.50 -29.47, 28.95 

S06 Light activity 0.80 ± 2.53 0.00 ± 0.00 -4.16, 5.76 1.20 ± 2.57 0.00 ± 0.38 -3.84, 6.24 

S06 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S06 Indoor activity 20.22 ± 15.88 -13.50 ± 11.88 -51.35, 10.90 15.61 ± 16.76 -9.00 ± 11.88 -48.46, 17.24 

S06 Climbing stairs 13.00 ± 16.79 -1.50 ± 7.25 -48.21, 34.21 14.25 ± 11.95 -6.00 ± 10.12 -43.52, 31.02 

S07 Light activity 0.82 ± 2.14 0.00 ± 0.00 -3.96, 4.87 1.27 ± 2.00 0.00 ± 0.50 -3.43, 5.24 

S07 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S07 Indoor activity 15.11 ± 13.88 -11.00 ± 5.88 -42.71, 13.16 10.50 ± 14.78 -5.50 ± 3.75 -39.73, 20.07 

S07 Climbing stairs 12.50 ± 9.95 -4.50 ± 8.50 -36.39, 31.39 12.75 ± 11.79 -3.50 ± 8.12 -36.17, 37.67 

S07 Outdoor walk 7.37 ± 7.72 0.00 ± 4.50 -18.56, 22.76 7.43 ± 7.61 -0.50 ± 4.88 -18.59, 22.66 

S08 Light activity 4.55 ± 3.93 0.00 ± 3.75 -9.40, 13.40 6.00 ± 4.98 7.00 ± 4.00 -6.13, 16.67 

S08 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S08 Indoor activity 20.72 ± 16.64 -11.00 ± 13.50 -56.05, 18.83 17.50 ± 15.36 -9.50 ± 7.88 -50.43, 21.21 

S08 Climbing stairs 9.00 ± 7.79 -4.00 ± 6.50 -27.83, 18.83 9.50 ± 10.21 -3.50 ± 6.50 -32.05, 20.05 

S08 Outdoor walk 17.25 ± 12.29 -14.00 ± 11.75 -41.61, 7.39 6.82 ± 5.37 -4.50 ± 4.25 -19.18, 10.26 

S09 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.10 ± 0.32 0.00 ± 0.00 -0.52, 0.72 

S09 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S09 Indoor activity 17.44 ± 15.44 -10.50 ± 12.50 -47.70, 12.81 15.22 ± 14.40 -11.50 ± 6.88 -45.43, 19.43 

S09 Climbing stairs 9.00 ± 11.17 -4.00 ± 6.50 -32.11, 17.11 8.00 ± 10.30 -3.00 ± 5.50 -29.27, 16.27 
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S09 Outdoor walk 15.83 ± 10.40 -16.00 ± 9.38 -40.73, 15.99 7.13 ± 5.64 -3.50 ± 4.25 -19.85, 14.65 

S10 Light activity 2.00 ± 3.30 0.00 ± 1.88 -4.47, 8.47 4.30 ± 6.22 1.00 ± 4.00 -7.89, 16.49 

S10 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S10 Indoor activity 24.56 ± 14.59 -21.50 ± 11.62 -53.14, 4.03 16.67 ± 16.37 -10.00 ± 5.12 -48.75, 15.42 

S10 Climbing stairs 10.50 ± 8.54 -7.00 ± 8.75 -31.57, 18.57 8.00 ± 10.95 -1.00 ± 4.50 -22.59, 30.59 

S10 Outdoor walk 21.76 ± 12.90 -16.00 ± 12.50 -54.28, 20.83 13.24 ± 11.57 -2.00 ± 10.00 -36.15, 33.25 

S11 Light activity 2.90 ± 4.86 0.00 ± 3.00 -6.63, 12.43 3.00 ± 4.06 0.50 ± 2.75 -4.95, 10.95 

S11 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S11 Indoor activity 19.00 ± 14.43 -13.00 ± 6.00 -49.26, 13.93 15.78 ± 14.86 -10.00 ± 3.62 -46.44, 17.99 

S11 Climbing stairs 0.00 ± nan 0.00 ± 0.00 nan, nan 0.00 ± nan 0.00 ± 0.00 nan, nan 

S11 Outdoor walk 15.73 ± 14.54 -7.00 ± 10.75 -46.63, 20.81 8.64 ± 10.04 -0.50 ± 5.38 -28.61, 22.24 

S12 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.40 ± 0.84 0.00 ± 0.00 -1.25, 2.05 

S12 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S12 Indoor activity 25.17 ± 15.39 -23.00 ± 13.00 -55.34, 5.01 21.56 ± 15.01 -16.00 ± 9.00 -50.98, 7.87 

S12 Climbing stairs 18.75 ± 16.28 -5.50 ± 12.12 -53.81, 52.31 17.25 ± 16.07 -4.00 ± 10.62 -49.91, 50.41 

S13 Light activity 3.09 ± 3.83 0.00 ± 1.00 -10.01, 9.65 3.64 ± 3.47 3.00 ± 2.50 -4.27, 10.82 

S13 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.14 ± 0.38 0.00 ± 0.00 -0.60, 0.88 

S13 Indoor activity 27.39 ± 18.34 -32.00 ± 18.75 -63.33, 8.55 15.89 ± 15.74 -10.50 ± 4.00 -46.74, 14.96 

S13 Climbing stairs 13.20 ± 10.89 0.00 ± 9.00 -37.38, 34.18 13.80 ± 12.85 0.00 ± 10.00 -31.45, 43.05 

S13 Outdoor walk 28.14 ± 16.08 -30.50 ± 11.00 -65.86, 15.95 16.59 ± 14.16 -5.00 ± 10.75 -44.42, 42.15 

S14 Light activity 0.50 ± 1.58 0.00 ± 0.00 -2.60, 3.60 1.70 ± 2.31 1.00 ± 1.00 -2.83, 6.23 

S14 Complete rest 15.00 ± 14.00 -14.00 ± 8.50 -42.44, 12.44 15.00 ± 14.00 -14.00 ± 8.50 -42.44, 12.44 

S14 Climbing stairs 5.00 ± 5.60 0.50 ± 2.75 -13.89, 16.89 5.00 ± 6.16 1.50 ± 3.25 -11.04, 18.04 

S14 Outdoor walk 19.45 ± 14.39 -16.00 ± 15.25 -52.62, 23.14 13.97 ± 10.60 -4.00 ± 10.25 -37.61, 30.32 

S15 Light activity 1.00 ± 1.70 0.00 ± 0.75 -4.33, 2.33 2.60 ± 2.55 0.00 ± 2.25 -6.63, 7.83 

S15 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S15 Indoor activity 25.17 ± 16.56 -24.50 ± 15.25 -57.62, 7.29 20.44 ± 13.97 -21.50 ± 9.25 -47.82, 6.93 

S15 Climbing stairs 12.25 ± 8.58 -7.50 ± 9.88 -35.42, 24.92 9.50 ± 9.68 -4.00 ± 6.75 -31.25, 19.25 

S16 Light activity 3.91 ± 3.91 0.00 ± 4.00 -5.79, 12.16 7.36 ± 6.30 9.00 ± 6.00 -4.98, 19.71 

S16 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S16 Indoor activity 41.39 ± 16.65 -50.00 ± 8.12 -74.02, -8.76 21.33 ± 15.85 -18.00 ± 8.88 -54.64, 14.86 

S16 Climbing stairs 11.00 ± 8.08 -5.00 ± 8.00 -31.16, 27.16 7.00 ± 4.83 -4.50 ± 5.75 -20.16, 14.16 

S16 Outdoor walk 26.80 ± 15.73 -28.00 ± 8.75 -60.99, 10.59 15.40 ± 10.35 -8.00 ± 6.75 -41.04, 27.17 

S17 Light activity 1.40 ± 3.27 0.00 ± 0.00 -7.81, 5.01 1.10 ± 2.42 0.00 ± 0.00 -5.85, 3.65 

S17 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S17 Indoor activity 37.56 ± 14.81 -41.50 ± 6.88 -66.59, -8.52 17.00 ± 10.26 -15.00 ± 5.62 -37.10, 3.10 

S17 Climbing stairs 11.50 ± 14.15 -2.50 ± 7.00 -32.15, 41.15 7.75 ± 7.59 -2.50 ± 5.12 -21.57, 24.07 

S17 Outdoor walk 17.33 ± 11.92 -16.00 ± 10.62 -41.78, 8.31 5.50 ± 4.60 -3.00 ± 2.50 -15.17, 12.84 

S18 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 1.44 ± 3.00 0.00 ± 0.50 -4.44, 7.33 

S18 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S18 Indoor activity 17.61 ± 16.34 -10.50 ± 9.00 -51.05, 18.50 18.94 ± 14.19 -14.00 ± 5.75 -49.21, 14.65 

S18 Climbing stairs 6.40 ± 7.13 0.00 ± 7.00 -21.57, 11.97 6.60 ± 7.89 0.00 ± 6.50 -22.96, 12.16 
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S18 Outdoor walk 4.97 ± 4.56 1.00 ± 4.00 -9.78, 14.89 3.97 ± 3.09 -1.00 ± 2.50 -10.37, 9.47 

S19 Light activity 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S19 Complete rest 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00, 0.00 

S19 Indoor activity 16.44 ± 15.07 -12.50 ± 9.88 -46.13, 13.46 12.83 ± 15.49 -8.00 ± 4.50 -43.20, 17.53 

S19 Climbing stairs 8.50 ± 8.39 7.00 ± 3.25 -7.94, 24.94 6.25 ± 8.66 2.00 ± 4.12 -13.37, 23.87 

S19 Outdoor walk 7.11 ± 5.40 0.00 ± 7.00 -18.69, 16.69 6.05 ± 5.12 -1.00 ± 4.00 -16.41, 15.04 

S20 Light activity 0.89 ± 2.67 0.00 ± 0.00 -4.34, 6.12 2.56 ± 5.94 0.00 ± 0.50 -9.09, 14.20 

S20 Complete rest 0.00 ± nan 0.00 ± 0.00 nan, nan 0.00 ± nan 0.00 ± 0.00 nan, nan 

S20 Indoor activity 39.06 ± 12.92 -42.00 ± 6.12 -64.38, -13.73 17.22 ± 14.83 -13.50 ± 7.38 -46.44, 12.22 

S20 Climbing stairs 0.00 ± nan 0.00 ± 0.00 nan, nan 0.00 ± nan 0.00 ± 0.00 nan, nan 

S20 Outdoor walk 23.19 ± 12.25 -26.00 ± 10.00 -47.62, 1.54 6.15 ± 5.68 -2.00 ± 5.00 -17.58, 15.21 
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6.2. A.2 Mean Percentage Error in 30 seconds time 
window for each activity 

 

Algorithm Light activity - 
Reference Steps 

Light activity 
- Steps Range 

Light activity - 
Mean Error 

(%) 

Dummy 0.00 0.00 - 24.00 nan 
Banglesimple 0.00 0.00 - 16.00 nan 

Espruino 0.00 0.00 - 1.00 nan 
Oxford 0.00 0.00 - 26.00 nan 

Autocorrelation 0.00 0.00 - 8.00 nan 
Fft 0.00 0.00 - 18.00 nan 

 
 

Algorithm 
Complete rest 

- Reference 
Steps 

Complete rest - 
Steps Range 

Complete rest - 
Mean Error (%) 

Dummy 0.00 0.00 - 0.00 nan 
Banglesimple 0.00 0.00 - 0.00 nan 

Espruino 0.00 0.00 - 0.00 nan 
Oxford 0.00 0.00 - 0.00 nan 

Autocorrelation 0.00 0.00 - 0.00 nan 
Fft 0.00 0.00 - 0.00 nan 

 

Algorithm 

Climbing 
stairs - 

Reference 
Steps 

Climbing 
stairs - Steps 

Range 

Climbing stairs - 
Mean Error (%) 

Dummy 28.70 0.00 - 60.00 42.34 
Banglesimple 28.70 0.00 - 51.00 30.90 

Espruino 28.70 0.00 - 52.00 26.29 
Oxford 28.70 0.00 - 65.00 40.20 

Autocorrelation 28.70 0.00 - 58.00 35.89 
Fft 28.70 0.00 - 51.00 30.72 

 
 

Algorithm Indoor activity - 
Reference Steps 

Indoor activity 
- Steps Range 

Indoor activity 
- Mean Error 

(%) 

Dummy 49.18 0.00 - 61.00 25.25 
Banglesimple 49.18 0.00 - 54.00 48.37 

Espruino 49.18 0.00 - 58.00 58.82 
Oxford 49.18 0.00 - 67.00 26.22 

Autocorrelation 49.18 0.00 - 56.00 55.40 
Fft 49.18 0.00 - 59.00 34.54 
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Algorithm Outdoor walk - 
Reference Steps 

Outdoor walk 
- Steps Range 

Outdoor walk 
- Mean Error 

(%) 

Dummy 38.59 0.00 - 61.00 40.21 
Banglesimple 38.59 0.00 - 54.00 37.05 

Espruino 38.59 0.00 - 55.00 26.95 
Oxford 38.59 0.00 - 69.00 40.03 

Autocorrelation 38.59 0.00 - 56.00 36.88 
Fft 38.59 0.00 - 55.00 20.85 
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