Testing

This document is all about the Testing plug-in of the Espruino Web IDE. The chapters
include a formal and exemplary description of the various testing elements. The Appendices
includes a rich collection of working examples that come as default with the plug-in and are
for learning by example and for complementing the formal, exemplary description with all
the available options on loadable and running example. The formal, exemplary description
would have become to abstract with including all the available options.

Table of content

Table of content
1 Overview
2 Getting started - Your 1st Application
3 Testing Views
4 Form View
5 Data Point
5.1 Basic Data Point Examples
5.2 Data Point Data Types
5.3 Active vs. Inactive Data Point
5.4 Order of Data Points in definition List
6 Test Action
6.1 Basic Test Action Examples
6.2 Test Run with Test Actions executed
6.3 Command Test Action with User Input
6.4 Examples of Command Test Action with User Input
6.5 Form Test Action
6.6 Form Test Action Example
6.7 Order of Test Actions in definition List and Forms
7 Image View
7.1 Data Point Image Display Options
7.1.1 N - Number - Display
7.1.2 S - String - Display
7.2 Test Action Image Display Options
7.2.1 B - Button - Display
8 Properties
8.1 Description
8.2 Image .jpg
8.3 Active Poll
8.4 Inteval (secs)
8.5 Poll Format
8.6 Project .js
9 Elements of the Testing User Interface
9.1 Ul Elements of Top Bar of Form and Image Views
9.2 Ul Elements of Upper 'Half' Form View
9.3 Ul Elements of Lower 'Half' Form View
9.4 Ul Elements of Image View - The Canvas
9.5 Ul Elements of pop-up for data point image specs

http://localhost/testing_doc/testing_doc.html#top 1/23

5/26/2015

Testing

9.6 Ul Elements of pop-up for test action image specs
9.7 Ul Elements of pop-up for loading a saved testing
9.8 Ul Elements of pop-up for saving a testing
9.9 Ul Elements of data entry pop-up in image view
10 Testing Operations
11 Transmission Examples
12 Sandbox directory structure
13 Log File: Test Recording
14 Testing Definition File
Appendices
Data Point Examples Explained
Action Point Examples Explained

1 Overview

Testing provides command and data entry and visualisation toolset to interact with Espruino
boards through a GUI for testing, monitoring, and controlling. A testing has elements to
display pulled values - called Data Points - and elements for setting coded or user solicited
values and invoking functions with and without parameters - so called Test Actions . Data
points are shown Testing Views as plain text, graphs, and gauges; test actions are shown as
button with and without input fields, and whole forms. Testing views can have a Background
Image defined in the Properties to look just like a real control panel.

A testing can be started, paused, resumed, and stopped. While running (started), the values
get pulled repeatedly on an interval defined in the properties. The pulled values can be
recorded - logged - in JSON format in Log Files with extension .json. The files are stored in
sub-folder of the Espruino IDE configured project folder and can be reused for viewing and
post processing either within Espruino IDE graphing feature or editor or any other
(visualization) tool.

Testing definitions - the sets of user defined data points and test actions including the
related properties - can be named and stored as .json file a sub-folder of the Espruino IDE
configured project subfolder and reloaded in and instant at a later time for reuse. Testing
can also pass control to another testings to create whole testing chains and user navigable
testing suite dialogs.

Under the hood, testing uses the console command and log infrastructure that comes with
the Espruino Web IDE. But rather having to type and copy and paste expressions repeatedly
into the console pane and recall past commands and entries (which get kind of lost anyway
on code upload), data points are updated automatically on intervals for viewing, and test
actions are readily available on a click or tap for immediate execution.

When a test is started (in *Active Poll* mode), a function is composed from the expressions
of the active data points and transmitted to the Espruino board. On defined *(poll)
Intervall*, testing invokes the function, which sends the data point values as evaluated by
the expressions for display. *Passive Poll* mode is when the code uploaded to the board
includes the code to gather the data point values and send them back to testing for display
on time terms defined too by this (user written) code. The code has to return the data point
values only in *JSON Poll Format* that matches the test's data point definitions. Support for
Passive poll mode is part of a next version. *Active Poll (mode)*, *(Pull) Intervall (time in
seconds)*, and *Poll Format* are part of the test's properties.

2 Getting started - Your 1st Application

http://localhost/testing_doc/testing_doc.html#top 2/23

5/26/2015 Testing

3 Testing Views

Testing has two views:

1. Form view - shows by default
2. Image or graphics view - shows on-demand

The form view serves also the purpose of defining the data points and actions points. The
image view uses defined data points and test actions and has functionality to place them on
the canvas. The can have a background image defined in the properties, which is is then
overlaid with the data point and test actions representations.

User can switch anytime between form and image view, but only the visible view is updated
with pulled test data. Switching to any view show the last shown update until next pull and
update happens. Pull interval can be set in Properties.

Both views show data points - values pulled from Espruino board - and test actions - user
controls with or without input, such as buttons and forms - that send commands to the
Espruino board.

4 Form View

5 Data Point

Note: 'Data Point' and 'Datapoint’ are used synonymously.

Data point is - any Espruino-valid - Javascript expressions that bottom line send their result
value from Espruino board back to testing.

A data point can be very very simple - such as a variable reference - to quite a complex -
such as a elaborate function. The data point value is shown in the form view as a line or
annotation in a Chart and as text or graphic - such as bar or gauge - in the image view.

A data point's work can be 'done' with just the console by typing a expression into the
console pane of the IDE and look at the printed result value. But data points do that way
more efficient for many at a time and - most important - repeatable on a interval basics,
and the result visualized not just as a text but in more comprehensive ways, such as charts,
graphs, bars, gouges, etc - even custom.

The most simple data point is a global variable name, such as myVar. Another simple
datapoint is a function invocation, such as myFunction(). Essential to a data point
expression is that something is returned to testing for charting and logging other than
undefined or null For that reasn, the expected return types has to be specified in the data
point definition.

5.1 Basic Data Point Examples

For the basic data point examples to work, assume below code snippet is uploaded to the
board. Notice that *myFunction() {...}* flashes the (red) LED1 for 33 ms. By that we know
when the function is invoked: every time data is pulled, (red) LED1 flashes. (You do not
need to type the code, just copy it from below, paste it into the Web IDE Editor - the right
page - and upload it.)

http://localhost/testing_doc/testing_doc.html#top 3/23

5/26/2015 Testing
// Code to co op w/ Basic Data Points Examples
var myNumVar = 55;

function myFunction() {
LEDl.set(); setTimeout('LEDl.reset()',33);
return "Secs: " + Math.floor(getTime());

}

var myBoolean = true;

Basic data point examples:

Label Expression @ Type
myNumVar myNumVar Number
myFunction myFunction() String
myBoolean myBoolean Boolean

This is how the List of defined Datapoints looks in testing form view (after having run for a

few seconds. Note that annotation - non-numeric values - show the value when hovering
over the annotation circle):

Datapoints
Graph of enabled Datapoints:
myMumVar myFunction [l myBoolean
55,010 5 1
List of defined Datapoints: Secs: 62496
| Labels (click|drag) 55.005
| myNumVar
| myFunction 55.000
| myBoolean
54,005
54,090
17:22:45 17:22:46 17:22:47 17:22:48 17:22:49
Addfupdate Datapoint;
myMumyar myMumvar Number =

This is how the list with expanded expression column looks:

http://localhost/testing_doc/testing_doc.html#top 4/23

5/26/2015 Testing

Datapoints
Graph of enabled Datapoints:
myMumVar myFunction [l myBoolean
55,010 5
List of defined Datapoints:
? Show / hide espressions ¥ Labels (click|drag) 55.005
() myMNumVar) myMNumVar
- {s) myFunction(} [QI myFunction 000
: (b) myBoolean M m myBoolean
54.995
54,990
17:22:45 17:22:46 17:22:47 172
Add/update Datapoint:
myMNumyar myMNumyar

5.2 Data Point Data Types

Type Description
Number Any numeric value
String A string value
Boolean A boolean value

5.3 Active vs. Inactive Data Point

A data point can be (temporarily) deactivated for form or image view (rather than deleted
from the list of data point definitions altogether). A data point that is not active in either of
the views is not pulled nor logged. (Active for recording / logging only is not implemented
yet).

This is how the list of defined data points and Graph of enabled data points looks like after
deactivating (unchecking) myFunction data point and running the test for a few seconds.
The annotation and legend entry for the myFunction are absent in the graph (and as well
the data in the transmission and logging/recording).

Datapoints
Graph of enabled Datapoints:
myMumVar myBoolean
55,040 f
List of defined Datapoints:
20O Labels (click|drag) 55.005
| myNumVar
myFunction 55000
| myBoaolean
54.995
54900

22:52:49 22:52:50 22:52:51 22:52:52 22:52:53 22:52:54 22:52:55

http://localhost/testing_doc/testing_doc.html#top 5/23

5/26/2015 Testing

5.4 Order of Data Points in definition List

Data points can be reordered in the list (using drag-drop). The order defines the execution
sequence within Espruino board on pull, the order of the properties / values in the object or
array return to testing, the sequence of lines in chart, the update sequence of the displays
in the image view, and the properties / values in the recorded object or array in the loged
files.

6 Test Action

Note: 'Test Action' and 'Testaction' and 'Action’ are used synonymously.

Test Action is - any valid - JS expressions that makes Espruino do something on-demand -
such as on clicking on a button - rather than on an interval as a data point does. A test
actions may expect the user to enter one to n values before sending the expression with the
values for execution to the Espruino board. Execution can be a variable assignment or
function invocation with or without parameter values provide by user entry.

Test actions can be 'done' to by entering the expressions directly into the console, but it is
just not that efficient and repeatable as through Testing GUI and also without any formal
user input validation.

The most simple example for a test action is of type command and is the invocation of a
function with no or only (hard-)coded parameters or the (declaration and) assignment of a
(hard-)coded value to a variable.

A bit more elaborate test actions are the assignments of values to variables and parameters
of function invocations with parameter, where the user is required to enter some the values
first before the text action can be execution. User input values are formally validated.
Therefore, a test action specification with user input includes data type specifications for
every such user input specification. When the test action is a variable value assignment
from a user input, then the value's data typ given by the test action type, such as Number,
String, or Boolean.

Single test actions can be combined or grouped into a Form Test Action . A form test action

is represented by a button. Clicking on that button in form views after entering values for all
the form included individual test actions fires all those form included individual test actions.

The buttons for the form included test actions are not show. For more details see Form Test
Action .

In image views, any test action that requires user input, show on button click a pop-up to
the user for entering the specified user values.

6.1 Basic Test Action Examples

For the basic test action examples to work, assume this code snippet is uploaded to the
board (Notice the addions of var myString = ... and mySetFunct() {... compared to the code
for the Basic Data Point Examples):

// Code to co op w/ Basic Test Action Examples

var myNumVar = 55;

function myFunction() {

http://localhost/testing_doc/testing_doc.html#top 6/23

5/26/2015 Testing

LEDl.set(); setTimeout('LEDl.reset()',33);
return "Secs: " + Math.floor(getTime());

}
var myBoolean = true;
var myString = "THE string.";
function mySetFunct() {
myNumVar = 44;
myBoolean = false;

myString = "THAT string.";
}

Basic test action examples:

Label Expression Type
Set_myNumVar myNumVar Number
Set_myString myString String
Set_myBoolean myBoolean Boolean

Invoke_myFunction myFunction() Command

This is how the List of defined Actions looks in testing form view:

Actions

List of Actions:
Label (clickidrag) 7 Value Action (|| dry run)
Set_myNumVar : o Set_myMumVar
Set_myBoolean :] Set_myBoolean
Set_myString : Set_myString
Invoke_mySetFunct : Invoke_mySetFunct

Add/update Action:

myMum\yar
Set_myMNumVyar Number =
o

This is how the list with expanded expression column looks:

Actions

List of Actions:
Label (clickdrag) ? Show / hide expressions Value Action ([_| dry run)
Set_myNumVar : myNum\ar 0 Set_myNumVar
Set_myBoolean : myBoolean O Set_myBoolean
Set_myString : myString Set_myString
Invoke_mySetFunct : mySetFunct() Invoke_mySetFunct

Add/update Action:

myMumyar
Set_myMNumVar Number =

http://localhost/testing_doc/testing_doc.html#top

7/23

5/26/2015 Testing

6.2 Test Run with Test Actions executed

This is how the chart with the enabled data points looks after running for 16 seconds and
clicking on test action buttons - the buttons with the arrow triangles pointing to the right -
and entering different values where needed. The test is defined as outlined in Basic Data
Point Examples and Basic Test Action Examples with related code just uploaded to the

board.
Datapoints
Graph of enabled Datapoints:
myMum¥ar myBoolean
80
List of defined Datapoints: 70 true: false
rd Labels (click|drag)
60
| myNumVar
myFunction 50
C myBoolean 40

30

20

234710 23:47:12 23:47:14 231716 23:17:18 23:17:20 23:17:22 23:17:24 20 23:17:22 23:17:24

Add'update Datapoint;
myMumvar myNumvar Mumber % Number +

Test actions and related inputs were ('~:##' denotes second on time line with '~' = 23:17):

1. ~:08 - Started test with myNumVar=55 and myBoolean=true (initial values):
myNumVar graph line starts at level 55, and myBolean annotation shows true.

2. ~:12 - Clicked Set_myNumVar button with 22 entered in related input field:
myNumVar graph line moves down to level 22 and no change in myBoolean
annotation.

3. ~:16 - Clicked Set_myNumVar button with 37 entered in related input field:
myNumVar graph line moves up to level 37 and no change in myBoolean annotation.

4. ~:19 - Clicked Set_myNumVar button with 77 entered in related input field:
myNumVar graph line moves down to level 77 and no change in myBoolean
annotation.

5. ~:21 - Clicked Invoke_mySetFunct() button:
myNumVar graph line moves down to level 44 and myBoolean annotation shows
change to false.

6. ~:24 - Stopped test with myNumVar at level 44 and myBoolean is true.

6.3 Command Test Action with User Input

The expression for a command - function invocation - with one-to-many user input values
includes a comma senarated list of parameter type and parameter name specifications of
the form {{type:name}} , where type can have the values n | s | b for number, string,
and boolean, and where name is the label and internal variable name of the user input field
in the form view and in the pop-up in the image view.

6.4 Examples of Command Test Action with User Input

http://localhost/testing_doc/testing_doc.html#top 8/23

5/26/2015

The previously know example code has to be extended with myFlexSetF() function and

uploaded to the board in order co op with the first example and will look like:

// Code to co op also w/ Command Test Action with User Input example

var myNumVar = 55;

function myFunction() {

return "Secs: " + Math.floor(getTime());

}

var myBoolean = true;

var myString = "THE string.";

function mySetFunct() {

myNumVar = 44;

myBoolean = false;
myString = "THAT string.";

}

function myFlexSetF (nmbr,bln,strng) {

myNumVar = nmbr;
myBoolean = bln;
myString = strng;

}

Examples of command test action with user input (For to work with specified code, add only

the first example to the list of test actions):

Label

Expression

Type

Invoke_myFlexSetF myFlexSetF({{n:nmbr}},{{b:bln}}, {{s:strng}}) Command

stepperl_goTo_X_Y stl.goTo({{n:x}},{{n:y}})

Command

With the (first) command test action with user input added, the list of (defined) test actions

looks like this:

Actions
List of Actions:
Label (click|drag) ? Show / hide expressions Value Action (|| dry run)

Set_myNumVar

s ryMNumVar

] Set_myMNumVar

Set_myBoolean : myBoolean Set_myBoolean
Set_myString : myString Set_myString
Invoke_mySetFunct : mySetFunct() Invoke_mySetFunct

Invoke_myFlexSetF

s myFlexSetF{{{n:myNmbr}},
{b:myBIn}{s:myStrng}}

0| myNmbr >...
myBin >...
myStrng >...

Invoke_myFlexSetF

Add/update Action:

Invoke_myFlexSetF

myFlexSetF{{{n:myNmbr}L{{b:myBln}}L{{s:myStrng}l)

Command %
p

Notice the three entry fields labeled - myNbr, myBIn, and myStrng - generated by the

{{type:name}} parameter specifications. The less-then (<) character and tripple-dots (...)

http://localhost/testing_doc/testing_doc.html#top

9/23

5/26/2015 Testing
indicate that this entry field represents an input parameter of the function. function

Clicking on Invoke_myFlexSetF button will formally validate the related three inputs values
and then invoke the (global) myFlexSetF() with them.

In order for the second example to work, st1 - for Stepper Motor 1 - must be a global
variable referencing an object hat understands the method .goto(x,y).

6.5 Form Test Action

Form test action is a command type test action that includes a group of 'individual' test
actions - variable assignment and commands with and without user input.

The form test action is always of type Form and its label always ends with an underscore (_)
- the only one in the label.

The individual test actions - variable assignments and function invocations with and without
user input value - that belong to the form have the form'’s label as prefix of their label. Test
actions belonging to a particular form show always together in the list of test actions and
are followed immediately by the form test action. They do not show a button. The form's
button executes the included test actions all at once one after the other (in the sequence as
listed).

In image views, where the form test action is shown as a button, on click of the button a
pop-up is shown to the user to enter the user values all at once and then submit them.

Note that forms can never include a test action of type Form.

6.6 Form Test Action Example

As you notice, the form (can and in this example does exclusively) reuse the
existing (global) variable assignments and (global) function invocation(s) as
earlier individually executable test actions used. (Therefore, no code addition is
required to execute this form test action.)

Label Expression Type
forml_myNumVar myNumVar Number
forml_myBoolean myBoolean Boolean
forml_myString myString String
forml_myFunction myFunction() Command
forml_ form1 - optional comment Command

With the form test action added to the test actions, the list looks like this:

http://localhost/testing_doc/testing_doc.html#top 10/23

5/26/2015 Testing

Actions
List of Actions:
Label (elick|drag) ? Value Action (|| dry run)
Set_myNumVar ! 0 Set_myMumVar
Set_myBoolean : Set_myBoolean
Set_myString : Set_myString
Invoke _mySetFunct Invoke_mySetFunct
Invoke_myFlexSetF 0 myNmbr>._.
myBin ...
myStrng >...
Invoke_myFlexSetF
form1_myMNumVar o formi_myNumVar
form1_myBoolean form1_myBoolean
form1_myString : form1_myString
form1_myFunction form1_myFunction
form1_ . | form1_ using existing test actions SUBMIT form1
Add/update Action:
myFunction()
form1_myFunction Command =

Clicking on form1_ button will formally validate all related inputs values and then execute
every individual test action in the form at once, one after the other in the sequence as
listed.

6.7 Order of Test Actions in definition List and Forms

Action points can be reordered in the list (using drag-drop). But for execution only the order
of individual test actions within each form matters. The sequence within the form defines
the execution sequence on the Espruino board.

Drag-drop of individual test actions of a form is limited to the form scope. Moving the form
test action includes the moving of the included individual test actions as a whole.

7 Image View

7.1 Data Point Image Display Options

7.1.1 N - Number - Display

format (sizs[1l]):
- number, for example #, .#, #.# where # are digits and indicate number indicates

digits before an after the decimal point, for example 10.2:
- format number as integer, .decimalFraction, and integer.decimalFraction

http://localhost/testing_doc/testing_doc.html#top 11/23

5/26/2015 Testing

with proper rounding and display centered. Not fitting numbers are still
displayed and will therefore not show adjusted as expected.

"My crazy number is {{-5.2}}, and this is fine with me!"
7.1.2 S - String - Display

format (sizs[1l]):

- number, for example 5 - max length of string, longer will be cut to #-3...
- String is displayed x/y-centered with maximum 'number' of characters.
Longer strings are truncated to 'number - 3' and suffixed with '...'

- string: template - for example:
- x/y-centered examples:

- "=: {{*}}" --- '=' at first position:
- '=' is replaced with label, for example: 'myString'’
'*' is replaced with value, for example: 'THE String'
- displays:
myString: THE String

- "{{5}} (=)" --- '(=)' at last position:
- '=' is replaced with label, for example: 'myString'’
- '5' is replaced with max 5 characters of value, for example: 'THE S'(tring)

THE S (myString)

- x/y-left adjusted examples:

naA "

- ..." where at the begin does left adjust, and remaining
pattern string (...) is processed the same way as

1A

min|other (sizs[3]):

0 normal font-weight and normal font-style

1 bold font-weight (270 bit - bitwise AND - & 1)
- 2 italic font-style (2”1 bit - bitwise AND - & 2)
3 bold font-weight and italic font-style

7.2 Test Action Image Display Options

7.2.1 B - Button - Display

format (sizs[1l]):

- number, for example #, .#, #.# where # are digits and indicate number indicates

digits before an after the decimal point, for example 10.2:

- format number as integer, .decimalFraction, and integer.decimalFraction
with proper rounding and display centered. Not fitting numbers are still
displayed and will therefore not show adjusted as expected.

- string: template - for example:
- x/-y centered examples:
- "=: {{*}}" ('=' at first position):

- '=' is replaced with label, for example: 'myString'’

- '*' is replaced with value, for example: 'THE String'
- displayed: 'myString: THE String'

"{{5}} (=)" ('(=)"' at first position):
- '=' is replaced with label, for example: 'myString'’

'*' is replaced with value, for example: 'THE String'

- displayed: 'THE String (myString)'
"My crazy number is {{-5.2}}, and this is fine with me!"
- x/y-left adjusted examples:

" " at the begin does left adjust, and remaining

1A

..." where

http://localhost/testing_doc/testing_doc.html#top 12/23

5/26/2015 Testing

pattern string (...) is processed the same way as

8 Properties

Clicking on the Properties button in the testing form view shows the Properties Dialog in a
POp-up.

TESTING PROPERTIES b4

Testing with Basic Data Point and Test Action
| Description |Examples.

= Image .jpg - none -
[Active Poll &

! Interval

| (secs) !

Poll Format | JSOM array (most terse) =

Project .js - None -

Debug
mode

0K

8.1 Description
8.2 Image .jpg

8.3 Active Poll

If checked - active polling:

e Testing creates the data point value poll (send) function on test start based on the
active data point specifications and uploads it to the Espruino board

» Invokes the poll function on specified intervall.

« Renders the incoming data in form or image view

If unchecked - passive 'polling':

» User defines data point value send ('pull') function including send interval handling and
uploads it with or separate of the application code to Espruino board
e Testing listens for incoming data and renders it in form or image view

With passive 'polling’, only JSON (full) poll format is supported and sent data type / format
has to match data point definitions. Data for undefined / unknown or inactive datapoints is
ignored. Data type / format mismatching data will will produce errors.

Note: passive polling is not supported with this version.

8.4 Inteval (secs)

http://localhost/testing_doc/testing_doc.html#top 13/23

5/26/2015 Testing

Interval (time in seconds - or fractions there of) defines the invocation rate for the data
point value poll (send) function / sampling rate for the rendering.

8.5 Poll Format

There are three poll formats (data formats) to choose from:

e JSON array (most terse) - [5, "String", true]
e JSON object optimized - { "_0":5, "_1":"String", "_2":true }
e JSON object - { "myNumber":5, "myString":"String", "myBoolean":true }

As obvious from a look at the transmitted data in the console, the JSON array poll format is
the most efficient one. Pulled data shown in section Transmission Examples is created by
Basic Data Point Examples .). When logging is on, poll format information is included at the
begin of the log to enable proper parsing and consummation of the logged data.

Selected poll format has also an impact on the logging / recording of the pulled data as
shown in section Log File: Test Recording .

Transmitted data with Poll Format: JSON array (most terse), which is the default and has
the best performance / least band with consumption:

8.6 Project .js

Loads javascript file from Sandbox projects folder into Web IDE editor and uploads it also to
Espruino board.

9 Elements of the Testing User Interface

A great deal went into the user interface to support it use and provide help (at least as seen
from a coder's point of view... 'creatives' will for sure be able to point out room for
improvement though). Most element have a hover activated tooltip (with HTML title="..."
attribute implemented). Move the (mouse) pointer from outside over an element and rest
until the tooltip shows. The next paragraphs show the UI, name the elements and provide a
brief description.

The Testing UI occupies the same real estate as the console and the frame around it of
Espruino's Web IDE. The two form and image testing views and the console are like a stack
of cards of which only one can be 'on the top' and visible at one time. Switching either
either between the console and the default (form) or last shown testing view or between
both testing form and image view.

When Web IDE starts up, the console is always the first view visible. Switching to the
testing view and back to console happens by clicking the 'code' () and'eye'/'watch' icons in
the bottom left of the frame. Switching between the form and image testing views happens
by clicking on view labeled radio button in the bar at the top of either view.

9.1 UI Elements of Top Bar of Form and Image Views

The top bar of both form and image views are practically identical. The bars host the high
level navigation and function controls, such as load and store a testing, start and stop it,
etc.

http://localhost/testing_doc/testing_doc.html#top 14/23

5/26/2015 Testing

e a

(T[] Lo Form
1) BasicTestingExamples = i R e g __Lf’l | Properties
(1) (2) (3 (&) (5) (&) (g Single shot g})image (7g)

UI Elements of view top bar are:

Load saved testing specification (Shows File Dialog pop-up) - Button
Name of the test (file name) - Display

Save testing specification (Shows Save Dialog pop-up) - Button

Start test - Button

Stop test - Button

Reset data point values history / chart data - Button

Enable logging of data point values - Checkbox

Enable single shot: test pulls data only once and then stops - Checkbox
Switch between Form and Image view - Radio button

Show Properties pop-up - Button

jury
COLONOUTAWNE

9.2 UI Elements of Upper 'Half' Form View

The upper half of the form view is also called datapoint section. It hosts the list of (defined)
data points, the chart of the enabled data points, and the edit and update controls for data
points.

N

Datapoints (10)(11) (12) (13) (14) (15
‘________——-—-'_"_h___, S N iy Sel L S N
-~ (Graphofenabled Darapo!nrs// / /
1) 2)(3)(4)85)6)T) myMumvar myBooles
— M A Mo
-+

-

L S S — -
i B0
Listiof gefinéd Dafapoints:
2?0 abels/(click|drag)
| yNumVar
: myFunction
: ? myBoolean
ft“_ T
(8) (9)
o o
2317:10 23:47:12 2317:14 2304716 23:47:18 23:47:20 23:17:22 23:17:24
fgffupdarf_.?\a tapoint: ["{5‘) (19) {_EJ
(16) {1 7myNumvar myNumyar “Number 4 =+
M A M

UI Elements of data points area are:

List of defined data points - Display

Delete all data points in list (no confirmation prompt) - Button

Hide / show data point expressions w/ data types - Sensitive area

Enable / disable all data points in graph (chart) - Checkbox

Show which color data pont ha in graph (chart) - Display

Show which data points are display on the image view - Display-Only Checkbox
Label (unique key/name) of data point (click to edit/update, drag-drop to change order
- Sensitive area

Delete particular data point (no confirmation prompt) - Button

Enable / disable particular data point in graph (chart) - Checkbox

Graph (chart / flotchart) of enabled data points - Display

NouhkwNE=

SRR

10.

http://localhost/testing_doc/testing_doc.html#top 15/23

5/26/2015

Testing

11. Mapping of line and notification color to enabled data point - Display
12. Auto scaling / grid-ing data point value axis - Display

13. Change notification area for non-numeric values - Display

14. Chart canvas for data line plotting in autoscaling grid - Display

15. Auto scaling / grid-ing time value axis - Display

16. Data entry area for create and edit/update data points - Display

17. Label (unique key/name) entry field for Data point - Entry field

18. Expression entry field for data point - Entry filed

19. Data type drop-down selection for data point - Drop-down

20. Add/Update data point (new label is add, existing is update) - Button

9.3 UI Elements of Lower 'Half' Form View

The lower half of the form view is also called test action section. It hosts the list of (defined)
test actions and the edit and update controls for test actions.

W@@@@@.@.\@@@.@.

tﬂ'ﬁ'é'l— {cf!cﬂ;vaﬁ} ? Shayf J‘rm'ﬁl‘r exnre‘smns\ \ \ \Va)ﬁ& Aé@nn\[# | dry run)

Sfet_mw‘u'ar y(‘um"-"?{ \ \ \ \ \ 0 - Set_myMumVar
.......... “myBoolean ! /‘melyan I \ \ \ \ \ \I Set_myBoolean

Set_myString / myStrifig \ \ \ \ \ \ Set_myString

Invoke mySetFun

mySﬁtFunct \

Invnke mySetFunct

Invoke 71F

s myFlexSetF{{{n:nmbr}}{b:bl},
{{gfstrng}})

| bin=>..
strng =>..
Invoke_myFlexSetF

UI Elements of test actions area are:

nhwnE

@0 N o

List of defined test actions - Display
Delete all test actions - Button
Delete particular test action - Button

Show/hide expressions - Sensitive area
Label of assignment test action of form1_ (click for edit/update, drag/drop to change

order) - Display

fnrm* rn}.rNum‘u'a : myNumVar El form1_myNumVar
fnrm1_manulef : myBoolean ll l\ form1_myBoolean
fnrm1_m1.rBtrI?é : myString ¥ orm1_myString
form1_ L4 : form1 - optional comment rm1 - optional comment SUBMIT form1
@fupdam Action:
forml - optional comment
forml_ Form =

Form test action label (click for edit/update) - Display
Command test action expression with parameter spec - Display
Form test action comment (optional) - Display

http://localhost/testing_doc/testing_doc.html#top

16/23

5/26/2015

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Testing

Input field of assignment test action of form 1_ - Input field
Form test action submit button - Button

Command test action with input execution button - Button
Command test action input parameter field - Input field
Command test action input parameter label - Display
Assignment test action input field - Input field

Assignment test action execution button - Button

Expression build / verification only when checked - Checkbox
Data entry area for create and edit/update test actions - Display
Label (unique key/name) entry field for test action - Entry field
Expression entry field for test action - Entry filed

Test action type drop-down selection for test action - Drop-down
Add/Update test action (new label is add, existing is update) - Button

9.4 UI Elements of Image View - The Canvas

The Image view canvas is - as the word says - a canvas and has therefore no elements by
itself or just a background image when defined in the properties. The canvas is used for
painting the text and graphical representation elements of the image enabled data points
and test actions (text labels, bars, gauges, dials, dial hands, etc. and buttons).

9.5 UI Elements of pop-up for data point image specs

9.6 UI Elements of pop-up for test action image specs

9.7 UI Elements of pop-up for loading a saved testing

9.8 UI Elements of pop-up for saving a testing

9.9 UI Elements of data entry pop-up in image view

10 Testing Operations

11 Transmission Examples

The next sections show what is transmitted between Espruino Board and Web IDE / testing
plug-in based on Basic Data Point Examples .

Transmitted data with Poll Format: JSON array:

>echo(0);

<<<<<[55,"Secs: 392" ,true]>>>>>
<<<<<[55,"Secs: 393" ,true]>>>>>
<<<<<[55,"Secs: 394" ,true]>>>>>
=undefined

>

Transmitted data with Poll Format: JSON object optimized:

http://localhost/testing_doc/testing_doc.html#top

17/23

5/26/2015 Testing

>echo(0);

<<<<<{"_0":55," 1":"Secs: 443"," 2":true}>>>>>
<<<<<{"_0":55,"_1":"Secs: 444"," 2":true}>>>>>
<<<<<{" 0":55," 1":"Secs: 445"," 2":true}>>>>>
=undefined

>

.
.
.
.

Transmitted data Poll Format: JSON object:

>echo(0);

<<<<<{"myNumVar":55, "myFunction":"Secs: 543", "myBoolean":true}>>>>>
<<<<<{"myNumVar":55, "myFunction":"Secs: 544", "myBoolean":true}>>>>>
<< <{"myNumvVar":55, "myFunction":"Secs: 545", "myBoolean":true}>>>>>
=undefined

>

The following loc excerpt cover a 16 seconds run (with 1 second pull-interval) of Test Run
with Test Actions executed .

>echo(0);
<<<<<[55,true]>>>>>
<<<<<[55,true]>>>>>
<<<<<[55,true]>>>>>
<<<<<[55,true]>>>>>
=undefined
>Troas();
<<<<<[22,true]>>>>>
=undefined
>Troas();
<<<LK[22,true]>>>>>
=undefined
>Troas();
<<<<<[22,true]>>>>>
=undefined
>Troas();
<<<<<[22,true]>>>>>
=undefined
>echo(0);
=undefined
>Troas();
<<<<<[37,true]>>>>>
=undefined
>Troas();
<<<<<[37,true]>>>>>
=undefined
>Troas();
<<<<<[37,true]>>>>>
=undefined
>echo(0);
=undefined
>Troas();
<<<K<KL[77,true]>>>>>
=undefined
>Troas();
<<<<<[77,true]>>>>>
=undefined
>echo(0);
=undefined
>Troas();
<<<<<[44,false]>>>>>
=undefined
>Troas();
<<<<<[44,false]>>>>>
=undefined
>Troas();
<<<<<[44,false]>>>>>

http://localhost/testing_doc/testing_doc.html#top

18/23

5/26/2015 Testing

=undefined

>Troas();
<<<<<[44,false]>>>>>
=undefined

>echo(1);

12 Sandbox directory structure

13 Log File: Test Recording

When Log checkbox is checked in form test view, pulled data points are logged / recorded in
a .json file. The file has the same name as the testing definition suffixed with a

_YYYY_MM_DD __hh_mm_ss timestamp (= the - local - time the test started). The file is
stored in the testinglog folder of the user named Espruino project / sandbox folder. The
timestamp entries in the log / recording are UTC, though.

Logged data / recording with Poll Format: JSON array (most terse) as file
BasicTestingExamples_2015_04 23 14 57 23:

[{"UTC":1429826243022, "testing":"BasicTestingExamples",6 "version":"1lv74","pollFormat":"arrJSON",
"receive":[["myNumVar", "number"], ["myFunction", "string"], ["myBoolean", "boolean"]],
"description":"Testing with Basic Data Point and Test Action Examples."}

,{"UTC":"1429826244055", "data":[55,"Secs: 392" ,true]}

,{"UTC":"1429826245051", "data":[55,"Secs: 393",true]}

,{"UTC":"1429826246059","data":[55,"Secs: 394" ,true]}

]

Logged data / recording with Poll Format: JSON object optimized as file
BasicTestingExamples_2015_04 23 14 58 13:

[{"UTC":1429826293995, "testing":"BasicTestingExamples", "version":"1lv74","pollFormat":"optJSON",
"receive":[["myNumVar", "number"], ["myFunction","string"], ["myBoolean", "boolean"]],
"description":"Testing with Basic Data Point and Test Action Examples."}

,{"UTC":"1429826295016","data":{" 0":55," 1":"Secs: 443"," 2":true}}

,{"UTC":"1429826296018","data":{" 0":55," 1":"Secs: 444"," 2":true}}

,{"UTC":"1429826297020","data":{"_0":55," 1":"Secs: 445"," 2":true}}

]

Logged data / recording with Poll Format: JSON object as file
BasicTestingExamples_2015_04_23 14 59 53:

[{"UTC":1429826393899, "testing":"BasicTestingExamples", "version":"1v74", "pollFormat":"objJSON",
"receive":[["myNumVar", "number"], ["myFunction","string"],["myBoolean", "boolean"]],
"description":"Testing with Basic Data Point and Test Action Examples."}

,{"UTC":"1429826394921","data" : {"myNumVar":55, "myFunction":"Secs: 543", "myBoolean":true}}

,{"UTC":"1429826395923", "data" : {"myNumVar":55, "myFunction":"Secs: 544", "myBoolean":true}}

,{"UTC":"1429826396924" ,"data" : {"myNumvVar":55, "myFunction":"Secs: 545", "myBoolean":true}}

]

14 Testing Definition File

"version": "1lv77",
"testDescr": ""
"imageUrl":

nn

http://localhost/testing_doc/testing_doc.html#top 19/23

5/26/2015

Testing

"testMode": "Form",
"pollInterval": 1,
"activePoll": true,
"pollFormat": "arrJSON",

nn

"testProject": 7
"testDebug": true,
"dataPoints": [

{

}
1,

"label": "myNumVar",
"expression": "myNumVar",
"type": "number",
"enabled": true,

"x": 0,

"y': 0,

"display": "N",

"onImg": false,

"sizs": [

B5,

2,

12,

0,
90,
=i,
-1

"label": "myFunction",
"expression": "myFunction()",
"type": "string",
"enabled": true,
"x": 0,
"y": 0,
"display": "S",
"onImg": false,
"sizs": [
"off",

"y n
4

14,
=i,
=1,
=i,
-1

"label": "myBoolean",
"expression": "myBoolean",
"type": "boolean",
"enabled": true,
"x": 90,
"y": 45,
"display": "I",
"onImg": false,
"sizs": [

false,

"testActions": |

{

"label": "Set myNumvar",
"expression": "myNumVar",
"type": "number",

"x": 0,

http://localhost/testing_doc/testing_doc.html#top

20/23

5/26/2015
"y": 0,
"display": "B",
"onImg": false,
"sizs": [
0,
12,
0,
0,
-1,
-1

"label": "Set_myBoolean",
"expression": "myBoolean",
"type": "boolean",

"x": 0,

"y": 0,

"display": "B",

"onImg": false,

"sizs": [

nn
4

0,
12,
0,
0,
-1,
-1

"label": "Set myString",
"expression": "myString",
"type": "string",
"x": 0,
"y": 0,
"display": "B",
"onImg": false,
"sizs": [

" IlI

0,
12,
0,
0,
=1,
-1

"label": "Invoke mySetFunct",
"expression": "mySetFunct()",
"type": "command",
"x": 0,
"y": 0,
"display": "B",
"onImg": false,
"sizs": [
" "I

0,
12,
0,
0,
],
-1

"label": "Invoke myFlexSetF",

"expression": "myFlexSetF({{n:nmbr}},{{b:bln}},{{s:strng}})",

"type": "command",

http://localhost/testing_doc/testing_doc.html#top

Testing

21/23

5/26/2015 Testing
"x": 0,
"y': 0,
"display": "B",
"onImg": false,

"sizs": [
"”I
0,
12,
0,
0,
=i,
-1
]
Y
{
"label": "forml myNumVar",
"expression": "myNumvVar",
"type": "number",
"x": 0,
"y": 0,
"display": "B",
"onImg": false,
"sizs": [
""I
0,
12,
0,
0,
=1,
-1
]
b
{
"label": "forml myBoolean",
"expression": "myBoolean",
"type": "boolean",
"x": 0,
"y": 0,
"display": "b",
"onImg": false,
"sizs": [
""I
0,
12,
0,
0,
],
-1
1
Y
{
"label": "forml myString",
"expression": "myString",
"type": "string",
"x": 0,
"y': 0,
"display": "B",
"onImg": false,
"sizs": [
0,
12,
0,
0,
-1,
-1
]
Y
{

"label": "forml myFunction",
"expression": "myFunction()",

http://localhost/testing_doc/testing_doc.html#top 22/23

5/26/2015

"type": "command",
"x": 0,
"y'i 0,
"display": "B",
"onImg": false,
"sizs": [

e

0,
12,
0,
0,
_l,
-1

"label": "forml ",

"expression": "forml - optional comment",

"type": "command",
"x": 0,

"y": 0,

"display": nSn’
"onImg": false,
"sizs": [

12,

Appendices
Data Point Examples Explained

Action Point Examples Explained

[End of Doc]

http://localhost/testing_doc/testing_doc.html#top

23/23

